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Abstract

Capsules are small liquid droplets enclosed by a thin hyperelastic membrane. The mem-

brane allows the separation and the protection of the internal fluid from the environment

and can control its liberation into the external media. Capsules are used as biomimetic

model of red blood cells and have many applications in bioengineering and pharmaceutics

such as drug targeting. Artificial capsules are classically produced by interfacial poly-

merization of emulsions: they tend to be quasi–spherical with a thin membrane, which

facilitates transmembrane exchanges. Under hydrodynamic stress, the capsule membrane

is subjected to buckling phenomena, which may persist at steady state depending on the

flow conditions. The first objective of the thesis is to analyze the effect of the bending

resistance on the dynamics of a capsule by modeling its wall as a thin shell with bend-

ing resistance. The membrane effects and the bending effects are decoupled in this new

model. This allows to implement various hyperelastic constitutive law to model the soft-

ening or hardening behavior of the mid–surface in the median plane, combined with the

generalized Hooke’s law for the bending effects. For the first time, this problem is solved

numerically by coupling a boundary integral method for the internal and external flows

with a shell finite element method for the wall deformation. For an initially spherical

capsule subjected to a simple shear flow or a planar hyperbolic flow, we show that the

motion and the deformation of the capsule at steady state are identical to those observed

for a 2D surface without bending resistance: the main deformation mode of the wall is

thus essentially controlled by the stretching of the mid–surface (elastic deformation in

the median plane). However, at low flow strength, wrinkles persist at steady state. To

model rigorously buckling phenomena, we take into account the bending resistance of the

wall. This allows us to determine the constitutive law that relates the wrinkle wavelength

to the wall bending resistance. All these results were used to estimate the value of the

bending modulus of artificial capsules subjected to a simple shear flow from experimental

images published in the literature using an inverse analysis method.

The second objective of the thesis is to investigate the influence of a non–spherical

shape on the dynamics of capsules subjected to a simple shear flow. We consider prolate

as well as oblate capsules, the red blood cells having an oblate discoidal shape. We have

determined the stable equilibrium configurations, modeling the capsule wall as a 2D sur-

face devoid of bending resistance, and studied the influence of the viscosity ratio between

xi



Abstract

the internal and the external fluids. We have shown that the stable regimes are not nec-

essarily the ones traditionally observed when the capsule revolution axis is placed within

the shear plane and that they only depend on the capsule aspect ratio, the viscosity ratio

and the ratio between the viscous and the elastic forces. We have also determined the

convergence time for an oblate capsule to reach its stable equilibrium configurations. One

of the perspective of this thesis is to simulate ellipsoidal capsules with the thin shell model.

Keywords: Capsule, fluid–structure interaction, boundary integral method, finite el-

ement method, thin shell model, buckling and wrinkling, stable equilibrium configurations
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Résumé

Les capsules sont des gouttes liquides entourées par une fine membrane hyperélastique,

qui joue un rôle de protection et peut servir au contrôle de la libération du fluide in-

terne dans le milieu environnant. Si les capsules constituent un modèle biomimétique

pour les globules rouges, elles sont également très largement utilisées en bioingénierie

et en pharmacologie pour véhiculer des principes actifs, par exemple. Les capsules ar-

tificielles, classiquement fabriquées par polymérisation interfaciale d’émulsions, ont une

forme quasi–sphérique et une membrane très fine. Cette dernière facilite les échanges

transmembranaires. Sous contrainte hydrodynamique, la membrane de la capsule est

soumise à des phénomènes de flambage, qui peuvent subsister à l’état stationnaire suiv-

ant les conditions d’écoulement. Le premier objectif de la thèse a été d’analyser l’effet

de la rigidité de flexion sur la dynamique d’une capsule en modélisant sa paroi comme

une coque mince comprenant une rigidité de flexion. La nouveauté du modèle est de

découpler les effets de membrane des effets de flexion. Cela permet de modéliser des com-

portements adoucissant ou durcissant de la surface moyenne située dans le plan médian

tout en décrivant la déformation en flexion par la loi de Hooke généralisée. Ce problème

d’interaction fluide–structure a été simulé numériquement en couplant pour la première

fois la méthode des intégrales de frontière (résolution des écoulements interne et externe)

avec la méthode des éléments finis de coque (résolution de la déformation de la paroi).

Pour une capsule initialement sphérique soumise à un écoulement de cisaillement simple

ou hyperbolique plan, nous avons montré qu’à l’état stable, le mouvement et la défor-

mation de la capsule sont identiques à ceux observés pour une surface 2D sans rigidité

de flexion: le mode principal de déformation de la paroi est donc essentiellement piloté

par les effets de membrane (déformation élastique dans le plan médian). Néanmoins, à

faible écoulement, des plis persistent à l’état stationnaire. La modélisation rigoureuse du

phénomène de flambage, qui nécessite de prendre en compte la résistance à la flexion de

la paroi, a permis de déterminer la loi de comportement reliant la longueur d’ondes des

plis à la résistance à la flexion de la paroi. L’ensemble de ces résultats a été utilisé pour

estimer la valeur du module de flexion de capsules artificielles sous cisaillement simple à

partir d’images expérimentales de la littérature grâce à une méthode d’analyse inverse.

Le deuxième objectif de la thèse a été d’étudier l’influence d’une forme non–sphérique

sur la dynamique de capsules soumises à un écoulement de cisaillement simple, que les cap-
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Résumé

sules aient une forme allongée ou aplatie comme dans le cas du globule rouge. Nous avons

déterminé les régimes mécaniquement stables pour une capsule ellipsoïdale, dont la paroi

est modélisée comme une surface 2D sans rigidité de flexion, et étudié l’effet du rapport

de viscosité entre les fluides interne et externe. Nous avons montré que les régimes sta-

bles ne correspondent pas forcément à ceux traditionnellement observés pour une capsule,

dont l’axe de révolution est placé dans le plan de cisaillement et qu’ils sont uniquement

fonction du rapport d’aspect de la capsule, du rapport de viscosité et du rapport entre

force visqueuse et force élastique de la capsule. Nous avons également déterminé le temps

necessaire pour qu’une capsule aplatie atteigne son état d’équilibre. Les perspectives de

l’étude portent sur la simulation des capsules ellipsoïdales avec le modèle de coque.

Mots clés: Capsule, interaction fluide–structure, méthode des intégrales de fron-

tière, méthode des éléments finis, modèle de coque mince, flambage et formation de plis,

configurations d’équilibre stables
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Principal notations

Latin symbols

a1, a2, a3 Covariant base vectors in the current configuration.

A1, A2, A3 Covariant base vectors in the reference configuration.

C Green deformation tensor.

Cas Surface capillary number.

Cav Bulk capillary number (shell model).

Dij Taylor parameter computed from the length Li and Lj of the axis

of the ellipsoid of inertia.

e Green-Lagrange strain tensor.

e1, e2, e3 Cartesian base.

F Deformation gradient.

G Shear modulus.

Gs Surface shear modulus.

g1, g2, g3 Three–dimensional covariant base in the current configuration.

G1, G2, G3 Three–dimensional covariant base in the reference configuration.

Is1, Is2 Invariants of membrane strain tensor.

J Jacobian.

Ks Area dilatation modulus.

ℓ Characteristic capsule size (Radius of the sphere with the same

volume as the capsule).

Li Length of the ellipsoid axis.

Mb Bending modulus.

q Viscous load exerted by the fluids on the wall.

Re Reynolds number.

r, s, z Intrinsic local Cartesian coordinates.

St Membrane surface (membrane model) or mid–surface (shell model).

t Time.

T Cauchy tension tensor.
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Chapter 1

Introduction

1.1 Encapsulation: definition and applications

Microencapsulation technology involves the immobilization of a fragile substance within a

solid wall. The thin wall forms a physical barrier that protects the encapsulated substance

against the external environment and controls its liberation. Depending on the wall

mechanical properties, the internal substance can be liberated slowly by diffusion across

the wall or rapidly if the wall ruptures or presents large pores as compared to the size of

the encapsulated molecules.

The principle of microencapsulation is ubiquitous. Many instances may be found in

nature. Seeds, eggs and cells can be considered as natural capsules since a wall separates

the internal media from the external environment (Figures 1.1). Red blood cells are an

example of "simple" natural capsules as they do not contain genetic material but are

responsible for complex functions. Their wall is composed of two layers: a lipid bilayer

(outer layer), which is incompressible and endows the wall with intrinsic viscosity and

bending elasticity, and a cytoskeleton, which is composed of a network of highly extensible

spectrin molecules and provides wall elastic properties. It protects the hemoglobin, which

is the protein responsible for the transport of oxygen through the organism and the control

of gas transfer to and from the tissues (Mohandas & Gallagher, 2008). With a diameter of

8 µm, red blood cells have the capability to squeeze through capillaries 3 µm in diameter

during their life cycle of 120 days without breakup (Klöppel, 2012). They, hence, have

remarkable mechanical properties that enable them to undergo large deformations.

One of the earliest industrial applications of capsules appeared in the 1930s in which

(a) (b)

Figure 1.1: Examples of natural capsules: (a) red blood cells and (b) fish eggs
(www.sciencephoto.com).
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(a) (b) (c)

Figure 1.2: Examples of artificial capsules used (a) for drug delivery (Pariot et al., 2002),
(b) for cell encapsulation (Orive et al., 2014) and (c) on textile (www.sciencephoto.com).

small capsules containing dye were used to copy typewritten material. The technique of

encapsulation rapidly interested a large panel of manufacturers since it allowed to protect

an internal substance from damage by environmental factors (acidity, alkalinity, evapora-

tion, heat, oxidization, light, moisture, etc.) (Lam & Gambari, 2014). Microencapsula-

tion became widely used in many industrial domains, such as agriculture (Gimeno, 1996),

printing (She et al., 2012), photography (T. Vandamme & Subra-Paternault, 2007) etc.

We hereafter highlight a few examples of current use of capsules in the fields of biotech-

nology, pharmaceutics, food and textile industries.

In pharmaceutics, drugs are usually administrated orally or by injection. Orally ad-

ministrated drugs have a limited efficacy and a low bioavailability since they are generally

degraded by hepatic enzymes before reaching their target. Transdermal drug delivery

is another possible technique of administration (Lam & Gambari, 2014; Bhujbal et al.,

2014), but the passage of the skin barrier leads to slow drug penetration rates and limited

drug uptake. To deliver a sufficient amount of drug to a targeted area, a higher quantity

must then be administrated, which can lead to systemic problem. Microencapsulation is

a promising alternative since it provides a physical barrier to protect the active molecules,

which increases their therapeutic efficiency, bioavailability and minimizes environmental

damages (Ghirardi et al., 1977) (Figure 1.2a). For example, insulin used to stabilize the

glycemia level of patients with diabetes, is a protein–based drugs sensible to enzymatic

degradation and thus has a poor oral bioavailability. Zheng et al. (2009) have developed

insulin microcapsules, which improve glucose tolerance from 2 h in the case of free insulin

to even 12 h in the case of insulin microcapsules. Microcapsules have also been used as

carriers for anti–inflammatory (Valot et al., 2009), antibiotic (Pandey et al., 2003) and

anti–tumor substances (Liu et al., 2005). However, the complexity of preparation, the

high manufacturing cost and the risk of allergic or immune reactions remain major draw-

backs (Bhujbal et al., 2014).

Cell encapsulation is another promising application of microencapsulation in biotech-

nology. It consists of the immobilization of cells within a microcapsule with a semiper-

meable polymeric wall (Figure 1.2b). The latter permits the passage of nutriments and
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oxygen from the external environment, which are necessary for cells to survive, and the

exit of byproduct molecules produced by the cells. It also protects the cells from immune

reactions. To guarantee the long–term functionality of the cells, one has to design cap-

sules with suitable stability, biocompatibility, durability and diffusion properties. If so

microcapsules with encapsulated cells have the potential to deliver drug over long periods

of time. Microencapsulation of islets of Langerhans could offer a possible solution to the

shortage of spleen donors and to the difficulties related to whole organ graft rejection

(Clayton et al., 1993; Ma & Su, 2013). Cell microencapsulation is also studied to treat

neurological diseases, bone and cartilage defect and ischemic myocardial tissue (Ma & Su,

2013; Orive et al., 2014).

Microencapsulation also has a high potential in food industry. It enables to pro-

tect sensitive components during the phase of food processing and passage through the

gastrointestinal tract. It is otherwise used to create visible and textural effects, pre-

serve the nutritional components and healthiness of ingredients, control their release and

mask/preserve flavors (Yang et al., 2014; Nazzaro et al., 2012). However, microencapsu-

lation results in additional costs, complicates the production process and may displease

consumers in some cases (e.g. new textural effects). Encapsulation is thus not the first

option when designing food formulations. Nevertheless, for the last few decades, the de-

mand for encapsulation has been growing to render food products healthier and tastier

(Zuidam & Shimoni, 2010).

Microencapsulation has found new applications in textile industry. It is used to pro-

duce biofunctional textiles, for which microcapsules are put onto the surface or incorpo-

rated into the fibers. Various substances can be encapsulated such as perfumes, dyes, an-

timicrobials, enzymes, flame retardants and insect repellents (Ocepek et al., 2012). They

can be liberated instantaneously by breakup when the textile touches the skin or over

long period of times such as for perfumes. In this case, the challenge is to design capsules

capable of withstanding harsh washing conditions (Li et al., 2008).

These few examples show that microencapsulation is a promising technique, which

could be used in a large panel of industrial domains in the future. However, industrial

applications require encapsulation techniques, which are able to produce capsules with

controlled size and mechanical properties adapted to their applications at stake. Encap-

sulation techniques developed to produce liquid–filled microcapsules will be presented in

section 1.2. We will then describe methods to characterize the wall mechanical properties

in section 1.3. As in most applications, capsules flow in an external flow, it is also neces-

sary to characterize their dynamics when they are subjected to an external flow. A review

of experimental and numerical studies of capsules in flow will be detailed in sections 1.4

and 1.5, respectively.

3



Introduction

1.2 Fabrication of liquid–filled capsules

The fabrication of artificial capsules is typically composed of two steps. The first step

consists of the generation of a liquid droplet with the required size and the second of the

creation of the wall around the droplet. In this section, we will briefly summarize some

classical as more recent techniques used to fabricate artificial capsules.

1.2.1 Classical techniques

Droplet formation

One of the most common methods to produce droplets is the emulsification process illus-

trated in Figure 1.3a (Edwards-Lévy et al., 1994; Chu et al., 2011). It is based on the use

of two immiscible fluids. A dispersed phase is poured into a continuous phase subjected

to a mechanical agitation. Due to the emulsification effect, a large number of droplets

are generated. The average size of the fabricated droplets is controlled by the process

parameters, i.e. the agitation velocity, emulsification time and fluids properties etc. It,

however, produces droplets with a large size dispersion (up to 40%) (Chu, 2011). The

inhomogeneity of the fabricated droplets also constitutes a limitation.

To generate droplets with more homogeneous size, an extrusion method can be used.

It consists in extruding the dispersed phase through an orifice or a syringe needle under

a controlled pressure (Gautier et al., 2011; Zhang & Salsac, 2012) (Figure 1.3b). Under

the effect of surface tension, droplets are formed one by one, which limits the number of

fabricated droplets. The advantage of this technique is the homogeneity of the droplet

size, which is controlled by the orifice/needle size and applied pressure.

Wall formation

The membrane around the droplets is generally formed by interfacial polycondensation

(Bouchemal et al., 2004; Janssen & Nijenhuis, 1992) or interfacial cross–linking polymer-

ization (Chu et al., 2011; Edwards-Lévy et al., 1994). A solution of monomers is used as

dispersed phase to form droplets. A cross–linking agent is then poured in the continuous

phase which contains the droplets. The cross–linking agent induces a reaction between

the monomers to form the wall. The reaction is typically stopped through rinsing. It

may also stop naturally if the reaction is no longer possible across the increasingly thicker

wall. The size of the fabricated capsules depends on the size of the droplets and on the

capacity of the two monomers to react together.
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(a)

Dispersed
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Continuous
phase Droplets

StirrerStirrer

(b)
Dispersed

phase

Continuous
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Peristaltic pump

Magnetic stirrer

Figure 1.3: Fabrication of droplets (a) from the emulsification process produced by a
mechanical agitation and (b) from an extrusion process.

1.2.2 Microfluidic techniques

The fabrication of microcapsules with a homogeneous and controlled size is important in

many applications. Over the past few years, several microfluidic techniques have been

developed to produce capsules.

A simple method to generate droplets with a microfluidic device is based on the con-

trol of the flow of non–mixing phases through bifurcating microchannels. The two most

common channel geometries used to generate droplets are:

• the cross–flowing or T–junction (Garstecki et al., 2006; Koleva & Rehage, 2012).

Introduced by Thorsen et al. (2001), this geometry is composed of a main channel,

where the continuous phase flows and a channel perpendicular to it, where the

dispersed phase is injected (Figure 1.4a).

• the flow focusing or Y–junction (Ganán-Calvo & Gordillo, 2001; Anna et al.,

2003; Chu et al., 2013). This system is composed of a central channel and two

lateral channels. The dispersed phase is injected in the central channel and the

continuous phase in the lateral channels (Figure 1.4b).

At the junction, a droplet forms when the flow of the dispersed phase penetrates into the

main channel and is split by the continuous phase flow: the shearing forces applied by the

continuous phase draws the interface between the two fluids into the direction of the flow

of the continuous phase and forms a neck. Due to the continuous phase flow, the neck

breaks and a droplet is generated. The droplet size is controlled by the geometry (channel

size, angle between the main and lateral channels), fluids properties (viscosity, wetting
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Figure 1.4: Schematic of the droplet formation processes (a) in a cross–flowing (or T–
junction) geometry or in (b) in a flow focusing geometry.

properties) and experimental parameters (temperature, flow rate). This technique allows

to produce easily droplets with a strong control of their size and a high monodispersity.

Like in bulk methods, the wall around the droplets is generally formed by interfacial

reaction. After their production in the microfluidic device, droplets can be collected in a

reservoir containing a cross–linking agent to generate microcapsules by interfacial poly-

merization (Huang et al., 2007; Yeh et al., 2009). One issue is that the wall mechanical

properties are generally not homogeneous over the entire batch since the reaction time

depends on the moment when the droplet is produced: the first droplet will be in contact

with the cross–linking agent for a longer time than the last one.

In order to control the reaction time, and consequently the wall mechanical proper-

ties, microfluidic systems have been developed to generate droplets and then form the

membrane within the same microsystem (Zhang et al., 2006; Chu et al., 2013). A schema

of the microsystem developed by Chu et al. (2013) is represented in Figure 1.5. The mi-

crosystem is composed of two parts: a first junction to fabricate the droplets and a second

junction to inject the cross–linking agent. The time of cross–linking is then controlled by

the length of a wavy channel located downstream of the second channel. Between the end

of the wavy channel and the reservoir to collect the fabricated microcapsules, Chu et al.

(2013) have added a cylindrical microchannel to characterize the wall mechanical proper-

ties by inverse analysis as described in the following section.

1.3 Characterization of the capsule wall mechanical

properties

Different techniques exist to characterize the physical (porosity) and mechanical properties

of capsules. In this section, we will highlight three of them, which have been developed to

6



Introduction

1: Dispersed phase flow
2: Continuous phase injection
3: Cross–linking agent injection
4: Wavy channel to control the reaction time
5: Channel to remove cross–linking agent
6: Injection of a continuous phase to dilute
the residual of cross–linking agent
7: Cylindrical channel to characterize the wall
mechanical properties
8: Reservoir

Figure 1.5: Schematic representation of a microfluidic system to fabricate and characterize
microcapsules in situ (Chu et al., 2013).

determine the mechanical properties of the capsule wall. All the developed methods are

based on the same idea. The capsule is deformed under a controlled stress, whether it is

induced by compression, aspiration or under an external flow. A picture of the deformed

capsule profile is visualized to compute the deformation and a mechanical model is then

applied to deduce the wall mechanical properties.

1.3.1 Technique of compression

One possible method to determine the mechanical properties of spherical millimetric

capsules is to compress them between two solid parallel plates at a constant velocity

(Carin et al., 2003; Rachik et al., 2006). During the experiment, the distance d(t) be-

tween the two plates and the resultant force on the capsule are recorded. Knowing the

initial diameter of the capsule (denoted 2 r0 on Figure 1.6) and the time evolution of

the distance d(t) between the two plates, the capsule deformation can be computed as a

function of time. A mechanical model is then used to estimate the intrinsic mechanical

properties of the capsule wall, such as the apparent elastic modulus from the capsule

deformation and the resultant force.

Rachik et al. (2006) have used this method to determine the influence of the thickness

of serum albumin–alginate capsule membranes on the Young modulus. They have shown

that the Young modulus does not increase linearly with the thickness. The fabrication of

thicker wall results in stiffer capsules.
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Figure 1.6: Compression of an initially spherical capsule between two parallel plates
(Rachik et al., 2006).

1.3.2 Micropipette aspiration technique

In the case of microcapsules, the mechanical characterization of the wall properties is a

challenging task due to the small size of the objects. The micropipette aspiration technique

has been successfully used to study the deformability of vesicles (liquid droplets enclosed

by a fluid membrane) (Kwok & Evans, 1981; Evans & Rawicz, 1990), cells such as red

blood cells (Hochmuth, 2000) and artificial capsules (Heinrich & Rawicz, 2005).

Figure 1.7: Aspiration of a phospholipid vesicle by a micropipette under a linear pressure
until its rupture (Heinrich & Rawicz, 2005).

As illustrated in Figure 1.7, a capsule is aspirated through a micropipette with an inner

diameter of several micrometers under a controlled pressure. The capsule deformation into

the micropipette depends on the applied pressure and is monitored by microscopy as a

function of the applied pressure. A mechanical model, which depends on the material to

characterize, is then used to determine the membrane elastic properties. For example,

Aoki et al. (1997) and Alexopoulos et al. (2003) have developed a model to interpret the

results obtained with biological incompressible membrane.

This technique is able to deform a capsule wall under a controlled pressure. However,

a limited number of capsules can be characterized with this technique since it requires to

manipulate skillfully capsules one by one.

1.3.3 Microfluidic technique

In order to characterize the wall mechanical properties of a capsule population, microflu-

idic techniques have been developed. The principle of the microfluidic techniques is il-
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lustrated in Figure 1.8. They consist of flowing a capsule suspension into a microfluidic

channel with cross dimension of the same order as the capsule size. Capsules undergo

large deformation due to hydrodynamic forces and boundary confinement. Capsules can

take either a parachute shape (Figure 1.8) or a slug shape. The wall mechanical properties

are then deduced by comparing the experimental recorded capsule profiles with the one

obtained with numerical model of the set–up.

Lefebvre et al. (2008) and Chu et al. (2011) have deformed the capsule into a cylindri-

cal glass capillary tube to determine the mechanical properties of ovalbumin membrane

using an axisymmetric model. One limitation of the technique comes from the difficulty to

connect the small cylindrical capillary tube to the pumping device. Microfluidic technolo-

gies may offer easier solutions to connect the capillary tube but the tubes thus produced

usually have a square or rectangular cross–section owing to fabrication constraint. Experi-

ments can no longer be analyzed with an axisymmetric model and require a specific model

of the flow of a capsule in a square or a rectangular pore. Hu et al. (2013) have recently

proven that the identification technique can be transposed to the case of a square–section

channel, if one simulates the three–dimensional fluid–structure interactions of the capsule

flowing in a square–section channel (Hu et al., 2012).

1.4 Capsules in an external flow: experimental ob-

servations

Capsules are generally subjected to an external flow in most their applications. They

undergo large deformations because of the strong fluid–structure viscous coupling of the

wall with the internal and suspending fluid flows. A good understanding of the capsule

motion and deformation is essential but few experimental studies have so far been con-

ducted owing to the difficulty to measure the deformation of a small–size particle flowing

in a controlled flow environment. In this section, we are interested specifically in the dy-

namics of a liquid–filled capsule in an unbounded external flow and not in the collective

behavior of suspensions.

Two types of flow are generally considered to study capsule deformation: a planar

hyperbolic flow and a simple shear flow. These flows were first used by Taylor (1934) to

study the behavior of droplets in Stokes flow. Experiments of artificial capsules suspended

in a planar hyperbolic flow can either be generated at the center of a four–roller device

or at the center of a cross–like channel as it has been done more recently (Figure 1.9a)

(de Loubens et al., 2014). They show that an initially spherical capsule is elongated in

the elongational direction and compressed in the perpendicular direction until it reaches a

steady state (Figures 1.9 b, c) (Akchiche, 1987; Barthès-Biesel, 1991; Chang & Olbricht,
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Experimental image Capsule deformation

Numerical database

Profile comparison

Experimental profile Numerical profile

Data deduced at each step:

L
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• Capsule velocity v0

• Channel width 2l
• External viscosity µ

• Capsule profile
• Total length L/l
• Parachute depth
(L− La)/l

• Initial radius a/l of the
spherical capsule
• Capillary number Cas,
which is the ratio between
the viscous and the elastic
forces.
• Velocity ratio v0/Vmean

Surface shear modulus
Gs = µ Vmean/Cas

Figure 1.8: Principe of the inverse analysis used to deduce the wall mechanical properties
of a capsule flowing in a square–section channel (Hu et al., 2013).

1993a; de Loubens et al., 2014). At steady state, the capsule wall and the internal fluid

are fixed, irrespectively of the internal viscosity.

The deformation of an artificial microcapsule subjected to a simple shear flow has

relied on the use of a Couette apparatus with distant walls to neglect their influence on

the capsule. It was observed by Chang & Olbricht (1993b), Walter et al. (2000, 2001)

and Koleva & Rehage (2012) (Figure 1.10a). The capsule is elongated in the straining

direction by the external flow. At steady state, the capsule wall rotates around the

deformed shape because of the flow vorticity. This motion is called tank–treading. An

interesting point revealed by Walter et al. (2001) and Koleva & Rehage (2012) is the

membrane folding at low flow strength (Figure 1.10b).

Some small shape oscillations about the straining direction have been observed at

steady state additionally to the tank–treaking (Koleva & Rehage, 2012; Walter et al.,

2001). This motion, called swinging, is due to the fact that artificial capsules are never

perfectly spherical. The artificial capsules fabricated by Koleva & Rehage (2012) for in-

stance had an aspect ratio of 0.97 - 0.99. A small deviation from sphericity is enough to
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(a) (b) (c)

Figure 1.9: (a) Microfluidic system used to created a planar hyperbolic flow along with
the velocity field observed by particle tracking velocimetry. (b) Initial capsule shape. (c)
Capsule shape at steady state (de Loubens et al., 2014).

(a) (b)

Figure 1.10: (a) Couette apparatus used to created a simple shear flow. (b) Membrane
folding of an initially spherical capsule at steady state (Koleva & Rehage, 2012).

induce motions, which are typically observed on red blood cells in shear flow depending

on the shear rate, viscosity ratio between the internal and the external media, mechanical

properties etc (Skotheim & Secomb, 2007). At low shear stress, a red blood cell exhibits

a tumbling motion, which is a solid–like motion in which the cell axis of symmetry rotates

in the shear plane (Figure 1.11a). If the viscosity of the surrounding fluid decreases, the

cell membrane experiences a tank–treading motion as the one described previously for

artificial capsules (Abkarian & Viallat, 2008). When the shear stress increases above a

critical value, the cells follow a swinging motion, in which the cell orientation oscillates pe-

riodically on either side of the flow direction but stays in the shear plane (Abkarian et al.,

2007) (Figure 1.11b). Nevertheless, Dupire et al. (2012) have recently observed that a

red blood cell in tumbling exhibits a rolling motion when the shear stress increases, if the

revolution axis does not lie in the shear plane. In rolling, the axis of symmetry of the cell

is perpendicular to the shear plane and the cell rotates like a wheel (Figure 1.11c). Even if

most of the experimental observations of the motion of an ellipsoidal capsule in shear flow

were conducted on red blood cells, artificial ellipsoidal capsules are interesting to use since

they have a higher surface–to–volume ratio than spherical ones (for the same internal vol-

ume). This characteristic is particularly interesting for capsule applications since the mass

transfer between the internal and external media is enhanced (Schneeweiss & Rehage,

2005). Thereby, some researchers have developed microfluidic devices to produce prolate
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(a)

(b)

(c)

Figure 1.11: Dynamics of a red blood cell in shear flow: (a) tumbling, (b) swinging
(Abkarian & Viallat, 2008) and (c) rolling (Dupire et al., 2012). (a) and (b) are top
views of the shear plane, whereas (c) is a side view.

or oblate microcapsules with arbitrary aspect ratio (Xiang et al., 2008; Liu et al., 2009).

Sometimes, ellipsoidal artificial capsules are fabricated unintentionally when two droplets

merge before adding the polymerizing agent to form the membrane (Chu, 2011).

1.5 Capsules in an external flow: numerical simula-

tions

As we have seen on the previous section, the dynamics of a capsule in an external flow

is a complex fluid–structure interaction problem. In order to understand the influence

of capsule shape, wall mechanical properties and flow strength on the capsule dynamics,

theoretical and numerical models have been developed. A good understanding of their

influence is essential to design artificial capsules with the adequate properties for the

targeted applications. In this section, we will highlight some strategies adopted to solve

the fluid–structure interaction problem.

1.5.1 Theoretical studies

Barthès-Biesel (1980) studied for the first time the mechanism of deformation of a mi-

crocapsule subjected to a simple shear flow. She established the principal assumptions

of the problem, which are always used nowadays: internal and external flows governed

by Stokes equations, two–dimensional elastic membrane, large deformation. Inspired by

the work done on droplets, she considered the influence of three parameters, the viscosity

ratio between the two fluids, a non–dimensional number hereafter called surface capil-

lary number, which compares the membrane elastic forces to the viscous forces and the

membrane constitutive law, on the capsule deformation in the shear plane and orientation

relative to the shear direction. She showed that the orientation of an initially spherical

capsule in shear flow depends on the ratio between the internal and external viscosity:

the more viscous the capsule, the more tilted it is towards the streamline. However, this
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theoretical study considers small deviation from the initial spherical shape and is limited

to steady state configurations.

Barthès-Biesel & Rallison (1981) improved the model by studying the time deforma-

tion of an initially spherical capsule with a two–dimensional elastic membrane under an

arbitrary Stokes flow. Transient phenomena could thus be studied with this method.

However, theoretical studies are limited to small deformation. When a capsule undergoes

large deformation, the problem becomes non–linear and numerical models are needed.

1.5.2 Axisymmetric models

Li et al. (1988) have studied numerically the dynamics of a capsule in an elongational

flow. They introduce the coupling strategy, which is always used nowadays to solve this

fluid–interaction problem. At each time step, the solid problem is solved to find the load

exerted by the fluids on the membrane. The fluid problem is then solved to deduce the

velocity of the membrane. The capsule deformation can then be updated. In this study,

as the flow is assumed to be axisymmetric, the problem is integrated in the orthoradial

direction and only half of the capsule contour is discretized with 48 collocation points.

A boundary integral method is used to solve for the Stokes flows inside and outside the

capsule. The capsule membrane equilibrium is expressed locally at each grid point of the

capsule wall. The method is reasonably accurate and stable in large deformation, even if

some numerical smoothing is necessary. This method has been used by Pozrikidis (1990)

to investigate the dynamics of a red blood cell in a straining flow. Diaz et al. (2000) have

improved the precision of the numerical method using B–spline functions to interpolate

the position of the membrane points.

Lefebvre & Barthès-Biesel (2007) have used an axisymmetric method to simulate nu-

merically the dynamics of a capsule in a cylindrical channel. As their numerical results

are in agreement with experimental observations, their numerical model has been used to

determine the mechanical properties of artificial capsule flowing in a cylindrical channel

(Lefebvre et al., 2008; Chu et al., 2011). However, Lefebvre et al. (2008) and Chu et al.

(2013) have observed experimentally membrane wrinkling due to compressive stresses in

the orthoradial direction (Figure 1.12). The assumption of invariance in the orthoradial

direction is thus not satisfied even if the base flow is axisymmetric.

1.5.3 Two–dimensional models

The capsule dynamics in an external flow has also been studied with two–dimensional

models. The capsule membrane that encloses the internal medium is represented by an

elastic line in motion in a plane and the internal volume conservation is replaced by the
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Figure 1.12: Wrinkling of the membrane of a cross–linked serum albumin capsule flowing
in a cylindrical channel (Chu et al., 2013).

invariance of the internal surface area.

Two–dimensional models allow to study non–axisymmetric problem, while maintain-

ing reasonable time computations. For example, they have been used to simulate the

migration of vesicles (Coupier et al., 2008) or red blood cells (Secomb et al., 2007) in a

bounded flow and to study red blood cell dynamics in suspension (Bagchi, 2007).

It is, however, questionable whether these simplified two–dimensional models can pro-

vide quantitative accurate results, since capsules are three–dimensional objects. It seems

for instance difficult for a two–dimensional model to simulate properly the post–buckling

behavior of a capsule in shear flow since it is a three–dimensional phenomenon.

1.5.4 Three–dimensional membrane models

Pozrikidis (1995) studied, for the first time, the dynamics of a capsule in a simple shear

flow with a three–dimensional numerical method. Other numerical methods have then

been developed to simulate the capsule behavior in an external flow. They are based on

the coupling strategy introduced by Li et al. (1988) but the manner to discretize and to

resolve the solid and fluid problems differ.

Most of the three–dimensional models consider the capsule wall as a two–dimensional

hyperelastic surface devoid of bending resistance. Two approaches have been adopted to

solve the capsule membrane mechanics:

• The strong form is widely used to simulate the capsule dynamics. It consists

in writing the equilibrium locally at each point of the capsule wall. Different ap-

proaches are then used to find the viscous load exerted on the membrane by the

internal and external fluids: Pozrikidis (1995), Ramanujan & Pozrikidis (1998) and

Li & Sarkar (2008) computed the membrane load as a piecewise constant func-

tion, Lac et al. (2004) and Lac & Barthès-Biesel (2005) used bi–cubic B–splines

instead of interpolation functions to compute the loads with high accuracy, whereas
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Dodson & Dimitrakopoulos (2008) used a spectral discretization of the problem.

• The weak form: the membrane equilibrium is written in its weak form to be

converted into a variational problem. A finite element method is then used to

find the viscous load exerted by the fluids on the membrane. This method is

generally coupled with an immersed boundary method (Eggleton & Popel, 1998;

Doddi & Bagchi, 2008a,b) or a boundary integral method (Walter et al., 2010) to

solve the fluid problem.

When a capsule is suspended in an external flow, its membrane and consequently the

two fluid domains undergo large displacements. In order to avoid remeshing the fluid

domains, three principal methods are applied:

• The boundary integral method (Ramanujan & Pozrikidis, 1998; Lac et al., 2004;

Dodson & Dimitrakopoulos, 2008; Walter et al., 2010, 2011; Foessel et al., 2011;

Hu et al., 2012). Introduced by Ladyzhenskaya (1969), this method allows, in Stokes

flow, to discretize only the membrane which avoids meshing the fluid domains. The

velocity of the membrane points is indeed expressed as a function of an integral on

the problem boundary. Generally, the same mesh is used to solve the solid problem

and compute the integral on the capsule wall.

• The immersed boundary method, developed by Peskin (2002). In this method,

the internal and external fluids are discretized with a fixed Eulerian grid whereas the

interface is discretized with a two–dimensional Lagrangian deformable mesh. This

method is less accurate than the boundary integral method since the velocity and

the load are exchanged between the solid and the fluids using approached Dirac func-

tions. This method allows to consider large Reynolds numbers and non–Newtonian

fluids.

• The Lattice–Boltzmann method used, for example, by Sui et al. (2010). Con-

trary to the more traditional methods, the fluid domains consist of fictive particles.

The fluid particles can collide with each other as they move under applied forces.

The rules governing the collisions are defined such that the time average motion

of the particles follows the Navier–Stokes equation. This method allows treating

complex boundaries, incorporating microscopic interactions and parallelizing the

algorithm easily.

The numerical simulations of an initially spherical capsule in shear flow have recov-

ered the tank–treading motion observed experimentally (Ramanujan & Pozrikidis, 1998;

Lac et al., 2004; Li & Sarkar, 2008; Walter et al., 2010; Foessel et al., 2011). The capsule
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motion and deformation depend on two main parameters: the surface capillary number

and viscosity ratio between the external and the internal fluids. Wrinkle formation has

been observed at low surface capillary number since the capsule is compressed in the

equatorial region. When an initially spherical capsule is subjected to a planar hyper-

bolic flow, the phenomena of stretching in the elongational direction and compression in

the perpendicular direction have also been studied numerically with a membrane model

(Dodson & Dimitrakopoulos, 2008; Lac et al., 2004; Walter et al., 2010; Dimitrakopoulos,

2014; Dodson & Dimitrakopoulos, 2014). It was observed that the membrane also tends

to buckle at low surface capillary number similarly to the simple shear flow case.

Motivated by the experimental observations on red blood cells and the interesting prop-

erties of the ellipsoidal capsules, the dynamics of non–spherical capsule have been also

studied numerically using a membrane model (Ramanujan & Pozrikidis, 1998; Sui et al.,

2008; Walter et al., 2011). Previous studies focused on the case when the capsule revo-

lution axis is initially in the shear plane. They recovered the tumbling and the swinging

motion observed on red blood cells. Walter et al. (2011) showed that the capsule motion

depends on the flow strength but not on the capsule aspect ratio.

1.5.5 Three–dimensional models with bending resistance

Finken & Seifert (2006) showed that buckling and wrinkle formation, which are due to

compressive stresses, are controlled by the wall bending resistance. In order to study

the capsule post–buckling behavior, some numerical models were developed to take into

account the capsule wall bending resistance. Pozrikidis (2001) studied, for the first time,

the influence of bending resistance on the capsule deformation by computing the bending

moments from the element curvature. However, inadequate spatial resolution leads to

significant inaccuracies and numerical instability at large deformation.

Other studies have been inspired by the studies carried out on vesicles, for which

the bending resistance is an important parameter (Kessler et al., 2008; Le et al., 2009;

Hang et al., 2012). They considered the capsule wall as a two–dimensional surface and

decomposed the wall strain energy into the sum of a membrane elastic energy and of

a bending energy computed from the local curvature. Le et al. (2009) and Hang et al.

(2012) observed a significant influence of the bending resistance on the deformation of an

initially spherical capsule when capsules have the same surface shear modulus. However,

extremely high values of bending modulus are used: for a spherical capsule with a ho-

mogeneous wall, it would correspond to a wall thickness of more than half of the capsule

radius. The value of bending modulus, which are considered, do not have any link with

the bulk shear modulus of the wall and are thus unrealistic.

Only Le & Tan (2010) considered the capsule wall as a three–dimensional material and
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modeled it as a thin shell. They investigated the capsule behavior in large deformation

but restricted the analysis to a Kirchhoff–Love kinematic assumption (i.e. no transverse

shear) and only considered one value of bending resistance. The influence of the bending

resistance on the capsule deformation is thus still an open question.

Contrary to most capsule models, the ones that are specifically developed to simulate

red blood cells typically take into account the cell bending resistance. Many models

of the mechanics of red blood cells are available in the literature but we have chosen

to highlight two of them, which consider the mechanical behavior of the cytoskeleton

and phospholipid bilayer. Recently, Klöppel & Wall (2011) developed a numerical model,

where the cytoskeleton and the lipid bilayer are represented by two distinct layers of shell

elements. The lipid bilayer behavior is described by an anisotropic viscoelastic constitutive

model, which is associated with a incompressible shell elements, whereas the cytoskeleton

is modeled as an isotropic hyperelastic third–order material. This model can be used to

study the effects of defects or disease on the red blood cell dynamics. Peng et al. (2011)

modeled also the lipid bilayer and the cytoskeleton as two distinct layers of continuum

shells. A molecular-based constitutive model is used to obtain the mechanical properties

of the cytoskeleton. This multiscale approach to model the red blood cell membrane

allows to understand the correlation between the molecular structure.

At low flow strength, the capsule membrane buckling, previously observed by Walter et al.

(2001), Koleva & Rehage (2012) and Chu et al. (2013) (Figures 1.10b, 1.12) is due to the

hydrodynamic stresses exerted by the flows of the internal and suspending fluids. Wrin-

kling formation has also been observed in other fluid–structure interaction problems like

in downwind yacht sails (Trimarchi, 2012). In order to capture the structural behavior

and wrinkle formation, Trimarchi et al. (2013) used shell finite elements of the Mixed

Interpolation of Tensorial Components (MITC) family. These elements allow to avoid

locking phenomena of thin structures as sails.

1.6 Objectives

The dynamics of a capsule in an external flow is a complex fluid–structure interaction

problem, for which some questions are still open. The first one is related to the membrane

wrinkling, which is observed experimentally at low flow strength in an unbounded shear

flow (Figure 1.10b) or in a channel (Figure 1.12). As we have seen in section 1.5.5, there

are no existing numerical models to study the influence of realistic bending modulus on

the capsule deformation and the wrinkle formation. It is important to study the capsule

post–buckling behavior since wrinkling may weaken the capsule wall and the internal

fluid could be liberated before reaching the desirable place. Our first objective is thus
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to develop a new numerical method to investigate the influence of the bending resistance

on the capsule dynamics by modeling its wall as a thin shell with bending resistance.

Based on the numerical method developed by Walter et al. (2010) in the Biomechanics

and Bioingineering Laboratory (Université de Technologie de Compiègne, France), we

couple a boundary integral method for the internal and external flows with a shell finite

element method for the wall deformation to solve this fluid–structure interaction problem.

The problem is presented in chapter 2. The new numerical model is outlined in chapter 3

and validated in chapter 4. The influence of the bending resistance on the dynamics of an

initially spherical capsule in a simple shear flow or a planar hyperbolic flow is investigated

in chapter 5 for various constitutive laws.

Since Dupire et al. (2012) has observed that red blood cell can exhibit a rolling motion

in shear flow, the stability of the tumbling and the swinging motion of ellipsoidal capsules

is a second open question. The second objective of this thesis is thus to determine the

stable equilibrium configurations of a non–spherical capsule subjected to a simple shear

flow, when capsule wall is modeled as a 2D surface devoid of bending resistance. We use

the numerical method developed by Walter et al. (2010) and Foessel et al. (2011). The

problem statement is briefly reminded in chapter 2. The stable equilibrium configurations

of a prolate capsule in shear flow are identified in chapter 6. We determine the stable

equilibrium configurations of an oblate capsule in shear flow and the time required for it

to reach equilibrium in chapter 7. In this last chapter, we also determine the influence of

the viscosity ratio between the internal and the external fluids on the stable equilibrium

configurations of an oblate capsule.
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Chapter 2

Capsule in Stokes flow

In this chapter, we will present the three–dimensional mechanical models for a capsule

flowing in an infinite Stokes flow. After the presentation of the problem assumptions, we

will briefly summarize the membrane BI–FE model introduced by Walter et al. (2010) to

simulate the motion of a capsule made of an infinitely thin wall devoid of bending stiffness.

The BI–FE model was generalized by Foessel et al. (2011) to account for any viscosity

ratio between the internal and external media. The membrane model will be considered

as our reference model when the wall thickness tends towards zero. We will then present

the thin shell model used to investigate the influence of bending resistance on the capsule

dynamics. Finally, the equations governing the fluid problem and the boundary integral

method, which is used to solve them, will be introduced in the last section.

2.1 Problem assumptions

A microcapsule, consisting of a liquid droplet enclosed by a thin hyperelastic wall, is

initially freely suspended in an external liquid. The internal and external fluids are both

incompressible and Newtonian with viscosity λµ and µ respectively, and have the same

density ρ. The gravitational effect can be neglected at the microscopic scale.

As the capsule wall is assumed to be impermeable, the mass conservation of the

internal flow is satisfied and the volume does not change over time. The capsule is thus

characterized by the length scale ℓ defined as the radius of the sphere with the same

volume V as the capsule:

ℓ =
(3V

4π

)1/3

. (2.1)

The capsule wall consists of a three–dimensional incompressible homogeneous material

characterized by a bulk shear modulus G, a bending modulus Mb, a Poisson ratio ν = 0.5

and a thickness αℓ with α the ratio between the wall thickness and the length scale ℓ. For

a homogeneous material, the bending modulus Mb is given by

Mb =
G

6(1− ν)
(αℓ)3. (2.2)

Assuming that the capsule wall thickness is very small compared to the length scale, the
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wall will be modeled as:

• a membrane, i.e. a purely two–dimensional elastic surface St of surface shear

modulus Gs = αℓG. The bending resistance is neglected compared to the elastic

forces in the membrane.

• a thin shell defined by a mid–surface St at time t and the wall thickness αℓ. In

the case of a spherical capsule, ℓ represents the length between the capsule center

and the mid–surface. In order to compare the bending and shear elastic forces, we

introduce the bending number:

Kb =
Mb

αGℓ3
=

Mb

Gsℓ2
(2.3)

In the case of an incompressible homogeneous material, the bending number is

simply written Kb = α2/3 from Eq. 2.2.

In this thesis, the capsule will be suspended in a simple shear flow with undisturbed

velocity

v∞ = γ̇yex (2.4)

or in a planar hyperbolic flow with undisturbed velocity

v∞ = γ̇(xex − yey) (2.5)

in the laboratory reference frame F(O, ex, ey, ez) with O the center of mass of the capsule.

The shear rate γ̇ characterizes the external flow and is the time scale of the problem.

In order to characterize the interactions between the capsule and the internal and

external flows, we introduce two capillary numbers:

• the bulk capillary number

Cav =
µγ̇

G
, (2.6)

which compares the viscous to the elastic forces in the case of the thin shell model.

• the surface capillary number

Cas =
µγ̇ℓ

Gs
=

Cav

α
, (2.7)

which compares the viscous to the surface elastic forces. This surface capillary number is

classically denoted Ca when the capsule is modeled as a membrane.

We denote the vectors in the reference and deformed configurations with uppercase

and lowercase letters respectively. The surface tensor components will be designed with
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Greek subscripts and the three–dimensional tensor components with Latin indices. The

quantities relative to the membrane model are denoted with the subscript "s". We adopt

the Einstein summation convention on repeated indices.

2.2 Membrane model

2.2.1 Membrane mechanics

In the membrane model, the thickness of the capsule wall is assumed to be small compared

to the capsule dimensions and typical radius of curvature. The capsule is then modeled

as a two–dimensional isotropic hyperelastic surface St at time t with shear modulus Gs

and area dilatation modulus Ks. It is assumed to be devoid of bending resistance. In this

section, we will briefly describe the membrane mechanics. More details can be found in

Walter et al. (2010) and Barthès-Biesel et al. (2010).

A membrane material point, identified by its position Xs in the reference state, is

displaced to the position xs(Xs, t) in the deformed state through the displacement us

xs(Xs, t) = Xs + us(Xs, t). (2.8)

At each time t, the position xs is found by solving the fluid problem. As we neglect

the wall bending resistance, the deformation occurs only in the plane of the membrane

and the normal vector remains normal to the surface during the deformation. The Green

deformation tensor is

Cs = F T
s · Fs, (2.9)

where Fs represents the transformation gradient defined as Fs = ∂xs/∂Xs. The local

deformation of the surface is measured by the surface Green–Lagrange strain tensor

es =
1
2

(F T
s · Fs − I) (2.10)

with I the identity tensor. The membrane deformation can also be quantified by the

principal dilation ratios λs1 and λs2 in the membrane plane, which correspond to the

eigenvalues of es. The two invariants of the transformation Is1 and Is2 can be defined by

Is1 = tr Cs − 2 = λ2
s1 + λ2

s2 − 2, (2.11)

Is2 = det Cs − 1 = λ2
s1λ

2
s2 − 1.

The ratio of the deformed membrane area to the reference area is measured by the Jabo-

bian Js = det Fs = λs1λs2.

21



Capsule in Stokes flow

The material mechanical properties are given by the strain energy function ws(Is1, Is2)

per unit area of undeformed membrane. Since the capsule wall is modeled as a two–

dimensional material, the elastic stresses are replaced by elastic tension tensors, which

correspond to forces per unit arc length measured in the plane of deformation. The

Piola–Kirchhoff tension tensor is defined as

π =
∂ws

∂es
. (2.12)

The Cauchy tension tensor T is related to the Piola–Kirchhoff tension tensor by

T =
1
Js

Fs · π · F T
s . (2.13)

2.2.2 Constitutive laws

In large deformation, thin hyperelastic membrane can have a strain–softening behavior

as gelled membranes exhibiting rubber–like elasticity or a strain–hardening behavior as

membranes made of a polymerized network with strong covalent links. A number of

constitutive laws were introduced to describe these different behaviors. However in this

thesis, we will consider only three laws with constant material coefficients.

Generalized Hooke’s law

The Hooke’s law, which describes the mechanical behavior of homogeneous isotropic linear

material, is the first–order linearization of any hyperelastic material Law. It assumes that

the Piola–Kirchoff tension tensor depends linearly on the Green–Lagrange strain tensor

such as

π = Hs : es. (2.14)

However, in many cases, the assumption of homogeneity and isotropy is not fulfilled and

a more general formulation is required. This law is called generalized Hooke’s law. It

keeps the linear proportionality between the stress and strain tensors but the non–linear

expression of the strain tensor is used.

For a two–dimensional material, the strain energy function is

ws =
GHG

s

4

(

2Is1 − 2Is2 +
1

1− νs

I2
s1

)

(2.15)

with νs the surface Poisson ratio. The surface Poisson ratio νs, the surface shear modulus

Gs and the area dilatation modulus Ks are linked by Ks = Gs(1 + νs)/(1 − νs) with

νs ]−1, 1[.
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Neo–Hookean law

Appropriate to model the behavior of protein–reticulated membrane (Carin et al., 2003;

Chu et al., 2011), the neo–Hookean law (NH) describes the behavior of an infinitely thin

sheet of a three–dimensional isotropic and incompressible material. For a two–dimensional

material, the strain energy function of the neo–Hookean law is given by

wNH
s =

GNH
s

2

(

Is1 − 1 +
1

Is2 + 1

)

. (2.16)

The area dilatation is balanced by membrane thinning because of the volume incompress-

ibility. The link between the area dilatation modulus and the surface shear modulus is

KNH
s = 3GNH

s when νs = 0.5.

Skalak law

Introduced by Skalak et al. (1973) to model the large deformation of biological membranes

such as red blood cells, the Skalak law (SK) is written

wSk
s =

GSk
s

2

(

I2
s1 + 2Is1 − 2Is2 + CI2

s2

)

, C > −1/2. (2.17)

The parameter C relates the area dilatation modulus Ks to surface shear modulus Gs such

that Ks = (1 + 2C)Gs. The law is used to describe biological membranes that are nearly

incompressible, by imposing large values of the parameter C. However, this law is general

and can describe the behavior of membranes, such as albumin–alginate membrane, for

which the area dilatation modulus Ks and the surface shear modulus Gs are of the same

order of magnitude (Carin et al., 2003).

Comparison of laws

In the limit of small deformation, these three laws reduce to the two–dimensional Hooke’s

law with surface shear elastic modulus Gs, if the surface Poisson ratio equals νs = 0.5

and the parameter of the Skalak law C = 1. However, large differences occur under large

deformation. Under an uniaxial stretching (T11 6= 0 and T22 = 0), Figure 2.1 shows that

the Generalized Hooke’s law and the Skalak law (C = 1) are strain–hardening, whereas

the neo–Hookean is strain–softening.

2.2.3 Membrane equilibrium

Owing to the negligible inertia of a membrane with small thickness, the Cauchy tension

tensor T and the external load q exerted by the fluids on the membrane are in equilibrium.
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Figure 2.1: Evolution of the principal tension T11/Gs as a function of the deformation
eS11 during an uniaxial test.

The membrane motion is thus governed by the local equilibrium equation

∇s · T + q = 0, (2.18)

where ∇s represents the surface divergence operator in the deformed configuration.

The principal of virtual work is then applied to deduce the weak form of the equa-

tion (2.18), on which the finite element method is based. Let V be the Sobolev space

H1(St,R
3). For any virtual displacement field ûs ∈ V, the virtual work of the external

fluid forces balances the virtual work of the membrane elastic forces. The solid problem

is written

∀ûs ∈ H1(St,R
3), find q such as

∫

St

ûs · q dS =
∫

St

ǫ̂
s
(ûs) : T dS, (2.19)

where ǫ̂
s
(ûs) = 1

2
(∇s ûs +∇s ûT

s ) denotes the virtual deformation tensor and is computed

from xs found by solving the fluid problem.

2.3 Thin shell model

The thin shell model assumes that the capsule wall is thin enough to be modeled as a shell

defined by its mid–surface St at time t and wall thickness αℓ. The principle of the thin

shell consists of evaluating all the quantities of interest on the mid—surface. In practice,
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it is commonly accepted that the thin shell approximation is valid for α < 10%. When the

wall is devoid of bending resistance, the mid–surface corresponds to the two–dimensional

surface of the membrane model.

2.3.1 Shell geometric definition

In the laboratory reference frame F(O, ex, ey, ez), it is convenient to introduce the in-

dependent curvilinear coordinates (ξ1, ξ2, ξ3) to describe the curved mid–surface. In the

reference configuration, the position of a point M of the mid–surface is given by

OM = ϕ(ξ1, ξ2). (2.20)

The local covariant base (A1,A2,A3) is then defined such as

Aα =
dϕ(ξ1, ξ2)

dξα
= ϕ,α and A3 =

A1 × A2

‖ A1 × A2 ‖
(2.21)

to study easily the mid–surface deformation. A3 represents the unit normal vector. The

contravariant base (A1, A2, A3) is then deduced using Aα ·Aβ = δα
β , with δα

β the Kronecker

tensor and A3 = A3.

In the reference configuration, the three–dimensional position of a point X within the

capsule wall is denoted

X(ξ1, ξ2, ξ3) = ϕ(ξ1, ξ2) + ξ3A3 (2.22)

with |ξ3| < αℓ/2.

In the reference configuration, the three–dimensional covariant base (G1, G2, G3) is

defined as

Gα = X,α = Aα + ξ3A3,α and G3 = A3. (2.23)

The volumemetric tensor is Gij = Gi ×Gj such that



















Gαβ = Gα ·Gβ

Gα3 = Gα ·G3 = 0

G33 = G3 ·G3 = 1.

The contravariant base (G1, G2, G3) is defined by Gα ·Gβ = δα
β .

The local three–dimensional covariant and contravariant bases are also defined in

the deformed state using lowercase letters: they are respectively denoted (a1, a2, a3) and

(a1, a2, a3) for the base defined according to the position of a point in the mid–surface,

(g1, g2, g3) and (g1, g2, g3) for the base defined according to the three–dimensional position

of the same point.
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Some essential symmetric tensors are now introduced for the shell analysis in the

deformed configuration. The metric tensors defined according to the local covariant base

(a1, a2, a3) and contravariant vectors (a1, a2, a3) are called first fundamental form of the

surface. In the deformed configuration, they are given by

aαβ = aα · aβ, aαβ = aα · aβ, (2.24)

and represent the restriction of the three–dimensional metric tensor to the tangent plane.

The curvature tensor b, called second fundamental form of the surface, is another

important second–order tensor, since it contains all the information concerning the surface

curvature. It is defined by

bαβ = a3 · aα,β. (2.25)

Its covariant–contravariant components are given by

bα
β = aαλbλβ = −a3,β · aα = aα

,β · a3 (2.26)

The mean and the Gaussian curvatures of the surface respectively are

Cm =
1
2

(

b1
1 + b2

2

)

=
1
2

tr b and CG = b1
1b2

2 − b1
2b2

1 = det b. (2.27)

2.3.2 Shell kinematics

In the deformed configuration, the new position x of a material point differs from its

initial position X through the unknown displacement u :

x(X, t) = X + u(X, t), (2.28)

where the vector u represents the displacement between the initial and deformed config-

urations. In the shell model, we assume that the displacement u satisfies the Reissner–

Mindlin kinematical assumption (Chapelle & Bathe, 2011), i.e. a material line initially

orthogonal to the mid–surface remains straight and unstretched during deformation but

does not remain orthogonal to the deformed mid–surface. All the terms depending on

(ξ3)2 are thus neglected in the expression of the displacement u, which can then be written

as

u(ξ1, ξ2, ξ3, t) = us(ξ1, ξ2, t) + ξ3 θλ(ξ1, ξ2, t) aλ(ξ1, ξ2). (2.29)

In this expression, the first term represents the displacement of a line perpendicular to

the mid–surface at coordinates (ξ1, ξ2). The angles θ1 and θ2 represent the rotations of

the line around the tangential vectors a1 and a2, respectively. In the case of the Reissner–

26



Capsule in Stokes flow

Mindlin kinematical assumption, the rotation vector is not defined along a3. To simplify

the notation, we introduce the rotation vector θ(ξ1, ξ2, t) = θλ (ξ1, ξ2, t)aλ(ξ1, ξ2, t) and

equation (2.29) then reads

u(ξ1, ξ2, ξ3, t) = us(ξ1, ξ2, t) + ξ3 θ(ξ1, ξ2, t). (2.30)

In this equation, the displacement us is deduced from the fluid problem and the rotational

term θ is an unknown.

The deformation gradient F links the covariant base vectors in the reference and

current configurations

gi = F ·Gi. (2.31)

It is generally a non–symmetric second–order tensor. Its determinant, the Jacobian J =

det(F ), has to be non–zero.

The Green–Lagrange strain tensor is defined by

e =
1
2

(

F T · F − I

)

. (2.32)

In the contravariant base, this expression becomes

e =
1
2

(

F T · F −G
)

= eij Gi ⊗Gj (2.33)

with

eij =
1
2

(gij −Gij)

=
1
2

(u,i ·Gj + u,j ·Gi + u,i · u,j) (2.34)

using the definition of the covariant base vectors gi in the current configuration.

The Reissner–Mindlin kinematical assumption implies that e33 = 0. However, using

the definitions of the displacement field (Eq. 2.30) and the covariant base vectors, we

find that e13 and e23 are non–zero and both involve the rotation θλ. Under the Reissner–

Mindlin kinematical assumption, the expression of the non–linear Green–Lagrange strain

tensor is



















eαβ = γαβ(us) + ξ3χαβ(us, θ) + (ξ3)2καβ(θ),

eα3 = ζα(us, θ),

e33 = 0.

(2.35)
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The tensors γ, χ and κ represent, respectively, the membrane, bending and curvature

strain tensors, and ζ the shear strain vector. They are defined by















































γαβ =
1
2

[Aα · us,β + Aβ · us,α + us,α · us,β],

χαβ =
1
2

[Aα · θ,β + A3,α · us,β + Aβ · θ,α + A3,β · us,α + us,β · θ,α + us,α · θ,β],

καβ =
1
2

[A3,α · θ,β + A3,β · θ,α + θ,α · θ,β ,

ζα =
1
2

[Aα · θ + A3 · us,α + θ · us,α],

(2.36)

in which the components of the shear strain vector ζ depending on ξ3 are neglected since

the zero–order term can itself be proved to be of the order of the thickness at solution.

2.3.3 Shell equilibrium

Similarly to the membrane model, the Cauchy stress tensor σ, which corresponds to forces

per unit area of deformed material, can be related to the Piola–Kirchhoff stress tensor Σ

by

σ =
1
J

F · Σ · F T . (2.37)

It follows that σ is a non–linear function of strain in large deformation.

The wall equilibrium satisfies the following conditions



















∇ · σ = 0 inside the wall,

σ · a3 = q+ on the external wall surface S+
t ,

σ · a3 = −q− on the internal wall surface S−

t ,

(2.38)

where q+ (respectively q−) represents the viscous load per unit deformed area exerted

by the external (respectively internal) fluid on the wall. Let V be the Sobolev space

H1(St,R
3). For any virtual displacement ûs ∈ H1(St,R

3) and virtual rotation θ̂ ∈
H1(St,R

2), the wall equilibrium (Eq. 2.38) can be rewritten using the principle of virtual

work as
∫

S
+
t

û (ûs, θ̂) · q+ dS −
∫

S
−

t

û (ûs, θ̂) · q− dS =
∫

V
ê (ûs, θ̂) : σ dV, (2.39)

where V is the shell wall volume in the deformed state, û an arbitrary kinematically ad-

missible virtual displacement, which satisfies the Reissner–Mindlin assumption (Eq. 2.29)

(Chapelle & Bathe, 2011) and ê the corresponding virtual strain tensor. This equation

means that the work done by the external loads acting on a deformable body equals to

the virtual change in internal strain energy.
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On S+
t , the virtual displacement reads

û (ξ1, ξ2, t) = ûs(ξ
1, ξ2, t) +

αℓ

2
θ̂ (ξ1, ξ2, t), (2.40)

+αℓ/2 being replaced by −αℓ/2 on S−

t .

Since the capsule wall is treated as a thin shell for both the real and virtual displace-

ment fields, the virtual work of the external load can be expressed in terms of the jump of

viscous traction forces q exerted by the fluids on the wall evaluated on the mid–surface.

The weak form of the wall equilibrium equations (Eq. 2.38) can thus be written as

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2),
∫

St

û (ûs, θ̂) · q dS =
∫

V
ê (ûs, θ̂) : σ dV, (2.41)

on the deformed configuration.

It must be noted that the deformation are measured with respect to the reference

configuration and the constitutive law generally links the Green–Lagrange strain tensor

and the second Piola–Kirchhoff stress tensor (Chamoret, 2002; Le Tallec, 2009). To change

the constitutive law easily, it is useful to write the right–hand side term of the principle

of virtual work (Eq. 2.41) on the reference configuration

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2),

∫

V
ê (ûs, θ̂) : σ dV =

∫

V0

ê (ûs, θ̂) : J (σF −1) dV

=
∫

V0

ê (ûs, θ̂) : F Σ dV. (2.42)

In the case of the thin shell model, the solid problem is written

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

3), find q such as
∫

St

û (ûs, θ̂) · q dS =
∫

V0

ê (ûs, θ̂) : F Σ dV. (2.43)

2.3.4 Shell mathematical models

In order to take into account the bending resistance of the capsule wall, we want to

replace the membrane model by a thin shell model in the numerical algorithm developed

by Walter et al. (2010) in the Biomechanics and Bioingineering Laboratory (Université de

Technologie de Compiègne). However, instead of rewriting entirely the shell model, we use

the shell finite element library Shelddon designed by Inria. The first shell finite element

used was based on the mathematical formulation of the basic shell model. However, the
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mathematical formulation of this model in the library is based only on the generalized

Hooke’s law. In order to consider the constitutive laws, which are traditionally used to

describe the capsule membrane behavior (see section 2.2.2) , we introduce a new shell finite

element based on the mathematical formulation of a shear–membrane–bending model.

Chapelle & Bathe (2011) have described the mathematical formulation of this model in

the case of a linear strain tensor. The shear, membrane and bending deformation are

separated in the formulation. It enables to choose a strain–hardening or strain–softening

constitutive law to describe the membrane effects combined with the generalized Hooke’s

law for the bending and shear effects. The mathematical formulation of the basic and

shear–membrane–bending shell models are presented in the following subsection. More

details on shell models may be found in Chapelle & Bathe (2011), Suarez (2006) and Lee

(2004).

The basic shell model

The basic shell model is important to understand the essential characteristics of most

classical shell models. In this model, an asymptotic analysis (Chapelle & Bathe, 2011)

shows that the shell is undergoing plane stress at first order (Σ33 = 0 at the first order).

This information is then used to eliminate the terms, which depend on e33 in the con-

stitutive law. The combination of this assumption with the one of the Reissner–Mindlin

kinematical assumption (e33 = 0) is in apparent contradiction. However, the value of the

component e33 is not present in the variational formulation. It thus has no impact on the

problem. More details are available in Chapelle & Bathe (2011).

The finite element of the Shelddon library based on the basic shell model describes

only the behavior of an isotropic linear elastic material using the generalized Hooke’s law,

sometimes called St Venant–Kirchhoff law. As we have seen in two–dimension in the

section 2.2.2, this law assumes a linear relationship between the Green–Lagrange strain

tensor e and the second Piola–Kirchhoff stress tensor

Σij = Hijkl ekl, (2.44)

with the elasticity tensor

Hijkl =
νE

(1 + ν)(1− 2ν)
Gij Gkl +

E

2(1 + ν)
(Gik Gjl + Gil Gjk), (2.45)

where ν is the Poisson ratio and E the Young’s modulus, which is related to the shear

modulus by G =
E

2(1 + ν)
.

Using the properties of the metric tensor Gij (Eq. 2.24), the assumption of plane
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stress and the properties of symmetry owing to the isotropy of the material, the second

Piola–Kirchhoff stress tensor becomes










Σαβ = Cαβλµ eλµ,

Σα3 =
1
2

Dαλ eλ3,

with

Cαβλµ = G
(

Gαλ Gβµ + Gαµ Gβλ +
2ν

1− ν
Gαβ Gλν

)

,

Dαλ = 4G Gαλ. (2.46)

The solid problem (Eq. 2.43) becomes

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2), find q such as
∫

V0

Fαβ

[

Cαβλµ eαβ êλµ + Dαλ eα3 êλ3

]

dV =
∫

St

û · q dS. (2.47)

The shear–membrane–bending model

In order to describe the stretching of the mid–surface with a Skalak or a neo–Hookean law,

we introduce the mathematical formulation of a new shear–membrane–bending model. It

is deduced directly from the basic shell model. The principle of this model is to separate

the work done by the shear, membrane and bending effects in the weak form of the wall

equilibrium.

Due to the small size of the wall thickness, we neglect the high–order terms of the

transverse coordinate ξ3 in the expressions of the Green–Lagrange strain tensor (Eq. 2.35)

and the contravariant metric tensors. Namely, the components of the Green–Lagrange

strain tensor (Eq. 2.35) become



















eαβ = γαβ(us) + ξ3χαβ(us, θ),

eα3 = ζα(us, θ),

e33 = 0.

(2.48)

The terms Gαβ are replaced by Aαβ in the expressions of Cαβλµ and Dαλ (Eq. 2.46).

Cαβλµ and Dαλ are now written as

Cαβλµ
0 = G

(

Aαλ Aβµ + Aαµ Aβλ +
2ν

1− ν
Aαβ Aλν

)

,

Dαλ
0 = 4G Aαλ. (2.49)

The weak form of the wall equilibrium (Eq. 2.47) becomes
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∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2),

∫

St

û · q dSt =
∫

V0

Fαβ

[

Cαβλµ
0

(

γαβ + ξ3χαβ

) (

γ̂λµ + ξ3χ̂λµ

)]

dV (2.50)

+
∫

V0

Fαβ Dαλ
0 ζα3 ζ̂λ3 dV.

We further assume that the thickness depends only on ξ1 and ξ2 and that the term

coupling the bending and membrane deformations is negligible. The weak form (Eq. 2.51)

is now written

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2),

∫

St

û · q dS =
∫

S0

Fαβ Cαβλµ
0

[

(αℓ) γαβ γ̂λµ +
(αℓ)3

12
χαβ χ̂λµ

]

dS (2.51)

+
∫

S0

(αℓ) Fαβ Dαλ
0 ζα3 ζ̂α3 dS. (2.52)

In the previous equation, we can notice that (αℓ)Cαβλµ
0 = ∂2ws

∂e2
s

for the generalized

Hooke’s law. The formulation of the solid problem can thus be generalized to consider

other constitutive laws to describe the mechanical behavior of the mid–surface in the

median plane. It becomes

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2),

∫

St

û · q dSt =
∫

S0

Fαβ
∂2ws

∂γ2
γαβ γ̂λµ dS (2.53)

+
∫

S0

Fαβ Cαβλµ
0

(αℓ)3

12
χαβ χ̂λµdS

+
∫

S0

(αℓ) Fαβ Dαλ
0 ζα3 ζ̂α3 dS (2.54)

where ws represents the strain energy function defined in section 2.2.2. A strain–hardening

or softening constitutive law can be thus used to model the behavior of the mid–surface

in the median plane, combined with the generalized Hooke’s law for the bending effects.
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2.4 Fluids problem

2.4.1 Stokes flow

The capsule is subjected to a viscous flow that follows the constitutive law

σ = 2µd− pI. (2.55)

For any velocity field v, this constitutive law assumes that the strain rate tensor

d =
1
2





∂v

∂xs
+

(

∂v

∂xs

)T


 (2.56)

is proportional to the imposed stress tensor σ (after subtracting the pressure term p).

The characteristic length ℓ is assumed to be sufficiently small, so that the Reynolds

number

Re =
ργ̇ℓ2

µ
≪ 1, (2.57)

which indicates that the viscous effects are dominant compared to the inertial effects. In

addition to the incompressibility condition

∇ · vint = 0, and ∇ · vext = 0, (2.58)

the internal and external flows are governed by the Stokes flow equations

∇ · σint = 0 and ∇ · σext = 0 (2.59)

where v and σ represent the velocity and the stress fields of the internal and external

flows.

2.4.2 Boundary conditions

Equations (2.58, 2.59) are solved on the capsule wall St by assuming the following problem

boundary conditions:

• Far away of the capsule, the external flow is not disturbed by the presence of the

capsule:

vext → v∞. (2.60)

• There is no slip on the capsule deformed wall St

vint (xs, t) = vext (xs, t) = v(xs, t) =
∂

∂t
xs (Xs, t) , xs ∈ St. (2.61)

33



Capsule in Stokes flow

• The load q per unit area on the wall is due to viscous traction jump on St

[σ] · a3 = (σext − σint) · a3 = q, xs ∈ St. (2.62)

2.4.3 Boundary Integral formulation

Sext

St

Ωext

Ωint

a3

a3

ρ, µ

ρ, λµ

Figure 2.2: Capsule freely suspended in a Stokes flow.

The boundary integral method, introduced by Ladyzhenskaya (1969), is based on the

fact that the instantaneous flow is independent of the motion history. This method only

depends on the present configuration due to the linearity of the Stokes equation. In

this section, we will present only the results that are relevant for a capsule flowing in

a suspending fluid. More details are available in Pozrikidis (1992), Walter (2009) and

Walter et al. (2010).

We consider a droplet of viscosity λµ modeled by the volume domain Ωint and sus-

pended in an external fluid of viscosity µ contained in the volume Ωext (Figure 2.2). We

assume that the internal and external fluids have the same density ρ. A surface St sepa-

rates the internal droplet and the surrounding fluid. The whole suspending fluid domain

is enclosed by an imaginary boundary Sext. The normal vector a3 of the interface Sext

points inwards, whereas the normal vector a3 of the surface St points into the external

flow domain.

Using the boundary integral formulation for the three–dimensional motion of the in-

ternal and external fluids on each interface, the velocity of the membrane or mid–surface
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point located at xs can be written

∀xs ∈ St,
1 + λ

2
v(xs) = − 1

8πµ

∫

St

J(r) · [σ] · a3(ys) dS (2.63)

+
1− λ

8πµ

∫ P V

St

v(ys) ·K(r) · a3(ys) dS

− 1
8πµ

∫

Sext

J(r) · σext · a3(ys) dS

+
1

8π

∫ P V

Sext

v(ys) ·K(r) · n(ys) dS,

where r = ys− xs represents the distance vector between the point xs, where the velocity

vector is calculated, and a point ys on the surface St. J and K denote the Green kernels

defined by

J(r) =
1
r
I +

r ⊗ r

r3
, K(r) = −6

r ⊗ r ⊗ r

r5
(2.64)

with r = ‖r‖. The notation P V means that the integral calculation is defined by Cauchy

principal value.

When a capsule is subjected to a unbounded flow, we assume that Sext = S∞, i.e.

the surface Sext is located such as the velocity is undisturbed on it. If v∞ denotes the

undisturbed velocity and σ∞ the corresponding stress tensor, the equation (2.63) becomes

∀xs ∈ St,
1 + λ

2
v(xs) = − 1

8πµ

∫

St

J(r) · [σ] · a3(ys) dS (2.65)

+
1− λ

8πµ

∫ P V

St

v(ys) ·K(r) · a3(ys) dS

− 1
8πµ

∫

S∞

J(r) · σ∞ · a3(ys) dS

+
1

8π

∫ P V

S∞

v∞(ys) ·K(r) · n(ys) dS.

In the absence of capsule, the undisturbed velocity on a fluid domain Ω′ surrounded

by the surface S∞ is written

∀xs ∈ Ω′, v∞(xs) = − 1
8πµ

∫

S∞

J(r) · σ∞ · a3(ys) dS (2.66)

+
1

8π

∫ P V

S∞

v∞(ys) ·K(r) · n(ys) dS.

According to this equation and the boundary condition (Eq. 2.62), the velocity of the
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membrane or mid–surface point located at xs is written

∀xs ∈ St,
1 + λ

2
v(xs) = v∞(xs)−

1
8πµ

∫

St

J(r) · q dS (2.67)

+
1− λ

8π

∫ P V

St

v(ys) ·K(r) · a3(ys) dS.

In order to eliminate the singularities in the Green kernels, the integral of the expres-

sion (2.67) is rewritten under an integral, which is easier to compute numerically. The

equation (2.67) can be written

∀xs ∈ St,
1 + λ

2
v(xs) = v∞(xs)−

1
8πµ

∫

St

J(r) · q dS (2.68)

+
1− λ

8π

∫ P V

St

(

v(ys)− v(xs)
)

·K(r) · a3(ys) dS

+
1− λ

8π

∫ P V

St

v(xs) ·K(r) · a3(ys) dS.

On the closed surface St, we have

− 1
4π

∫ P V

St

K(r) · a3(ys) dS = I. (2.69)

Finally, the solution of the fluid problem is given by

∀xs ∈ St, v(xs) = v∞(xs)−
1

8πµ

∫

St

J(r) · q dS (2.70)

+
1− λ

8π

∫ P V

St

(

v(ys)− v(xs)
)

·K(r) · a3(ys) dS.

2.5 Problem summary

In summary, a capsule, which is subjected to an external unbounded Stokes flow, is a fluid–

structure interaction problem. Knowing the position xs, we solve the wall equilibrium

given by

∀ûs ∈ H1(St,R
3),
∫

St

ûs · q dS =
∫

St

ǫ̂
s
(ûs) : T dS, (2.71)

when the capsule wall is modeled as a two–dimensional surface devoid of bending resis-

tance or

∀ ûs, θ̂ ∈ H1(St,R
3)⊗H1(St,R

2),
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∫

St

û · q dS =
∫

S0

Fαβ
∂2ws

∂γ2
γαβ γ̂λµ dS (2.72)

+
∫

S0

Fαβ Cαβλµ
0

(αℓ)3

12
χαβ χ̂λµdS

+
∫

S0

(αℓ) Fαβ Dαλ
0 ζα3 ζ̂α3 dS (2.73)

when the capsule wall is modeled as a thin shell, to find the viscous load q. Accord-

ing to these two equations, the viscous load q is a function of the displacement us and

consequently a function of the position xs.

Knowing the viscous load q, the velocity of the points is computed from the following

equation

∀xs ∈ St, v(xs) = v∞(xs)−
1

8πµ

∫

St

J(r) · q dS (2.74)

+
1− λ

8π

∫ P V

St

(

v(ys)− v(xs)
)

·K(r) · a3(ys) dS.

According to these equations and the boundary conditions, which are presented in the

section 2.4.2, the whole problem can be thus viewed as a first–order differential equation

in time

∀xs ∈ St, v (xs) =
∂

∂t
us. (2.75)
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Chapter 3

Numerical method

When the capsule wall is modeled as a two–dimensional surface (membrane model), the

fluid–structure interaction problem is solved by the method introduced by Walter et al.

(2010) by coupling a finite element method to solve the capsule membrane deformation

with a boundary integral method for the internal and external flows. This method was

adapted in this thesis to implement a thin shell model for the capsule wall to take into

account the wall bending resistance.

In this section, we present firstly the temporal scheme used to solve the fluid–structure

interaction problem. We then introduce the mesh discretization before formulating the

procedure to solve this problem with the thin shell model.

3.1 Temporal scheme

The dynamics of a capsule in an external flow is solved coupling a boundary integral

method for the Stokes equations with a finite element method to solve wall equilibrium

(Walter et al., 2010). Firstly, the capsule is deformed and oriented in space to get its

desired reference state. The external flow is then started. At each time step, the finite

element method is used to solve the wall deformation (Eq. 2.18 or 2.54 depending on

the wall model) knowing the mid–surface displacement us and deduce the viscous load q

exerted by the fluids on the wall at each node. Knowing q, the velocity of the capsule

nodes is then computed using the boundary integral method (Eq. 2.74). To update

the position of the nodes us at the following time step, the velocity, given by the Eq.

2.75 is integrated using an explicit second–order Runge–Kutta method in case of the

membrane model and an explicit Euler integration scheme in case of the thin shell model.

The numerical method is illustrated in Figure 3.1. Thereafter, we will present only the

numerical algorithm for the thin shell model, as the finite element formulation used for

the membrane model are presented in details in Walter (2009).

As the numerical method is explicit in time when integrating the evolution equation

(2.75), it is stable only for sufficiently small time steps ∆t that respect the stability

criterion

γ̇∆t < O
(

∆x Cas

ℓ

)

(3.1)
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Viscous load q
on the wall

Velocity v
of the nodes

Displacement us

of the node

Initial
position

Fluid problem Solid problem

Stokes flows Membrane/Shell model

Boundary Integral
method

Finite Element
method

Time
integration

Figure 3.1: Numerical method coupling a boundary integral method with a finite element
method (Walter, 2009).

with ∆x the mesh size (Walter et al., 2011). When the capsule is modeled with the thin

shell model, the introduction of bending does not modify the stability analysis because

the bending terms are imposed to be in equilibrium when solving the wall equilibrium

problem (see Appendix A).

3.2 Mesh discretization

Depending on the shell geometry and boundary conditions, the behavior of a shell struc-

ture is different, when the thickness becomes small. It can be classified in three asymptotic

categories: membrane–dominated, bending–dominated, or mixed shell problems. Regard-

less of the shell geometry, asymptotic category and thickness, the shell finite element

formulation should converge uniformly towards the exact solution of the mathematical

model. Otherwise, the phenomenon of numerical locking occurs. However, displacement–

based shell finite elements are too stiff for bending–dominated shell structures of small

thickness. In order to avoid the locking problems of thin structures, we use the MITC

(Mixed Interpolation of Tensorial Component) triangular shell finite elements based on

a mixed formulation, that were introduced by Lee & Bathe (2004). In this case, an ad-

ditional interpolation is performed for the out–of–plane components of the strains (the

eα3 components). As a continuous function can be represented as the sum of the con-
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tributions calculated in a finite number of locations, the idea of the MITC technique is

to interpolate the out–of–plane components of strain and displacement separately and

connect these interpolations at specific tying points. The MITC shell finite elements have

shown to behave well both in bending and membrane dominated problems and to satisfy

the following conditions:

• The finite element discretization can be solved for and no spurious zero energy mode

is encountered. This condition is called ellipticity.

• The finite element solutions converge to the solution of the mathematical model,

when the mesh size ∆x/ℓ tends to zero. The element thus respects the consistency

condition.

• The shell is free from shear and membrane locking. The solution accuracy is inde-

pendent of the shell thickness. These two points are called Inf–sup condition.

• The matrices do not depend on the element orientation. It is the spatial isotropy.

More details on the MITC can be found in Lee & Bathe (2004) and Suarez (2006).

Several MITC shell finite elements have been developed with square or triangular

shape, with one node at each vertex or a node at each vertex and one at the middle

of each side (Dvorkin & Bathe, 1984; Bathe & Dvorkin, 1986; Bucalem & Bathe, 1993;

Lee & Bathe, 2004). In the case of the thin shell model, we have chosen to discretize the

mid–surface using triangular elements, called MITC3, which have one node at each vertex

(Figure 3.2a). MITC6 triangular elements, which have six nodes, one at each vertex and

one at the middle of each side, exist and could be used to discretize the mid–surface, but

large differences on the load computed at a point and its neighbors have been observed.

As this problem has not been yet solved, we have used linear triangular elements and

refined the mesh to obtain the same mesh size than with the mesh used in the case of the

membrane model. In this case, the surface of the capsule is discretized using triangular

curved P2 elements, which have six nodes, one at each vertex and one at the middle of each

side (Figure 3.2b). The surface and the mid–surface are discretized using isoparametric

interpolations. All the unknowns (e.g. the point position, the velocity and the load) are

interpolated with the same shape functions.

In order to locate the position of a node on a element of the surface St, we use the

local Cartesian coordinates (r, s, z), where (r, s) are the intrinsic coordinates in the plane

element (defined such that r, s and 1 − r − s ∈ [0, 1]) and z is the coordinate along a3

(z ∈ [−1, 1]). If we consider a vector f , the value of the interpolated quantity is calculated

from the nodal values f (p). We note f
(p)
Xj

the jth Cartesian component of f at node p,

where p ∈ {1, ..., nn} with nn the number of nodes of the element. The array of size 3NN
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Figure 3.2: Capsule wall discretization: (a) MITC3 element (thin shell model), (b) P2

element (membrane model).

containing the Cartesian components of the vector nodal values is denoted by {f}. An

interpolated formulation for the vector f is then expressed as

f(r, s) =
nn
∑

p=1

λ(p)(r, s) f (p), (3.2)

where λ(p)(r, s) represent the standard shape functions and depend on the element type.

For MITC3 elements, the shape functions are

λ(1)(r, s) = 1− r − s , (3.3a)

λ(2)(r, s) = r , (3.3b)

λ(3)(r, s) = s . (3.3c)

and for P2 elements

λ(1)(r, s) = (1− r − s)(1− 2r − 2s) , (3.4a)

λ(2)(r, s) = r(2r − 1) , (3.4b)

λ(3)(r, s) = s(2s− 1) , (3.4c)

λ(4)(r, s) = 4r(1− r − s) , (3.4d)

λ(5)(r, s) = 4rs , (3.4e)

λ(6)(r, s) = 4s(1− r − s) . (3.4f)

The position vector x at node p inside an element MITC3 can thus be written

x(t) =
3
∑

p=1

λ(p)(r, s)

(

x(p)
s (t) + z

αℓ

2
a

(p)
3 (t)

)

, (3.5)
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(a) (b)

Figure 3.3: Typical capsule mesh with flat triangles (MITC3 elements) obtained (a) from
an icosahedron (NE = 5120, NN = 2562) and (b) from an octahedron (NE = 8192,
NN = 642).

and the corresponding virtual displacement

û =
3
∑

p=1

λ(p)(r, s)

(

û(p)
s + z

αℓ

2
θ̂(p)

)

. (3.6)

Initially, the capsule mid–surface (or surface) St is spherical. It is meshed with tri-

angular elements. The triangular mesh is obtained by inscribing an icosahedron (regular

polyhedron with 20 triangular faces) or an octahedron (regular polyhedron with 8 triangu-

lar faces) in a sphere. Each triangular face is then divided into 4 triangular sub–elements

by placing a new node in the middle of each side and projecting the new nodes radially

onto the sphere until reaching the desired number of elements. To obtain P2 elements

from a P1 element, which has one node at each vertex, a node is positioned at the middle

of each edge and is projected onto the sphere. We denote NE and NN the total number of

elements and nodes. Typical meshes obtained from an icosahedron and an octahedron are

represented in Figure 3.3. This figure shows that the mesh obtained from an icosahedron

is more homogeneous than the one generated from an octahedron, which is symmetrical

about two meridians. Table 3.1 gives the numbers of nodes and the average mesh size ∆x

used in this dissertation as a function of the number of MITC3 elements. In the case of

ellipsoidal capsule, the meshed sphere is deformed into an ellipsoid corresponding to the

capsule reference shape, before the computation is run.
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NE NN ∆x/ℓ
320 162 0.3
512 258 0.23
1280 642 0.15
2048 1026 0.12
5120 2562 0.075
8192 4098 0.06

Table 3.1: Number of nodes NN and mesh size ∆x/ℓ as a function of the number of
MITC3 elements. The meshes obtained from an octahedron are written in boldface.

3.3 Finite element formulation for shell model

Instead of rewriting entirely the MITC method, we use the shell finite element library

Shelddon designed by Inria1. The Shelddon library is coupled with the fluid solver de-

veloped in the Biomechanics and Bioingineering Laboratory (Walter et al., 2010, 2011;

Foessel et al., 2011) using a Parallel Virtual Machine protocol.

For a given deformed configuration, the weak form of the wall equilibrium equation

(2.43)2 is solved to determine the unknown viscous load q exerted by the fluids on the

wall. The objective of this section is to express Eq. (2.43) as a linear algebraic equations

at the mid–surface nodes. The integral over the shell volume can be decomposed as a

sum over all individual elements. The left–hand side of Eq. (2.43) can be expressed on

the deformed state as

∫

St

û · q dS =
∑

el

û
(p)
Xj

(∫

Sel

λ(p)λ(q)dS
)

q
(q)
Xj

,

=
∑

el

{ûel}T [Mel] {qel} (3.7)

where {ûel} and {qel} of size NN represent the Cartesian components of the discrete

virtual displacement and of the load, respectively, at the element nodes:

{qel} =
{

q
(1)
1 , q

(1)
2 , q

(1)
3 , ..., q

(nn)
1 , q

(nn)
2 , q

(nn)
3

}

,

{ûel} =
{

û
(1)
1 , û

(1)
2 , û

(1)
3 , ..., û

(nn)
1 , û

(nn)
2 , û

(nn)
3

}

.
(3.8)

The vectors {ûel} and {qel} are then assembled into their global counterparts {q} and {û}
of size 3NN . The same is done for the matrix [Mel], which is assembled into [M ] of size

1. The library is registered at the Agence pour la Protection des Programmes under ref:
IDDN.FR.001.030018.000.S.P.2010.000.20600. The base of the program is open source and available
online: www-rocq.inria.fr/modulef

2. To explain easily the finite element formulation, we consider only the general formulation of the
weak form of the wall equilibrium.
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3NN × 3NN . The left–hand side of equation (2.43) becomes

∫

St

û · q dS = {û}T [M ] {q}. (3.9)

Similarly, the right–hand side of equation (2.43) can be written over all individual

elements. First, we note that in the case of the generalized Hooke’s law, the constitutive

law is written

σ = H : e(u). (3.10)

The right–hand side of equation (2.43) becomes

∫

V
ê (ûs, θ̂) : σ dV =

∑

el

∫

V
[eel ({ûel})]T [Hel] [eel ({uel})] dV (3.11)

According to the definition (Eq. 2.34), the Green–Lagrangean strain tensor is non

linear and can be written

[eel ({uel})] = [Bel] {uel} (3.12)

where [Bel] is the element matrix, which contains the partial derivative. See Batoz & Dhatt

(1992) (p. 324 - 325) and Bonnet et al. (2014) for more details.

The right–hand side of equation (2.43) can be expressed as

∫

V
ê (ûs, θ̂) : σ dV =

∑

el

∫

V
{ûel}T [Bel]

T [Hel] [Bel] {uel} dV (3.13)

=
∑

el

{ûel}T [Kel] {uel}

where [Kel] the element stiffness matrix equals

∫

V
[Bel]

T [Hel] [Bel] dV. (3.14)

Finally, the right–hand side of equation (2.43) becomes

∫

V
ê (ûs, θ̂) : σ dV =

∑

el

{ûel}T{Rel} (3.15)

= {û}T{R} (3.16)

after assembling the vectors {ûel} and {Rel} into their global counterparts.

The discretized form of equation (2.43) becomes

{û}T [M ] {q} = {û}{R} ({us}, {θ}) . (3.17)
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As the equation must be satisfied for any virtual displacement, it can be simplified as

[M ] {q} = {R} ({us}, {θ}) .

The membrane degrees of freedom and the rotational degrees of freedom can be separated.

Eq. 3.3 finally becomes

{ {R}s ({us}, {θ})− [M ]s {qs} = {0}s, (3.18a)

{R}θ ({us}, {θ}) = {0}θ. (3.18b)

In this system, the mid–surface displacement degrees of freedom {us} is known at

time t + ∆t: it is found by integrating the node velocity given by the fluid solver at the

previous time step t. The viscous loads {qs} and the rotations {θ} are unknown. To solve

this system, we first solve the nonlinear equation (3.18b) in {θ} by a Newton’s method.

Numerically, we define the residual of equation (3.18b) as

R({θ}) = {R}θ ({us}, {θ}) . (3.19)

We search for the rotations {θ} such that R = 0. The equation is solved by subiterations

setting the convergence criterion at 1×10−7. Let {θt} be the rotation vector that satisfied

the zero–residual condition at time t and {θt+∆t} the solution we are looking for at time

t + ∆t. As rotation initial guess {θt+∆t
0 }, we use the rotation found at the previous time

step.

Using a first–order Taylor series, one can express the residual at the subiteration i + 1

as

R({θt+∆t
i+1 }) = R({θt+∆t

i }) +
∂R({θt+∆t

i })
∂{θ}

(

{θt+∆t
i+1 } − {θt+∆t

i }
)

. (3.20)

Let us search for {θt+∆t
i+1 }, such that R({θt+∆t

i+1 }) = 0. From equation (3.20), it reads

{θt+∆t
i+1 } = {θt+∆t

i } −
[

∂R({θt+∆t
i })

∂{θ}

]−1

R({θt+∆t
i })

= {θt+∆t
i } −

[

K({θt+∆t
i })

]−1R({θt+∆t
i }), (3.21)

where [K] represents the stiffness matrix. Equation (3.21) is solved for explicitly since

[K(θt+∆t
i )] and R(θt+∆t

i ) are known from subiteration i. If the new solution respects the

convergence criterion

|{θt+∆t
i+1 } − {θt+∆t

i }| < 10−7, (3.22)

the properly value of the rotation is found. Otherwise, one has to move on to the next
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subiteration and iterate until convergence.

When the value of the rotation is found, the load {qs} exerted by the fluids on the

wall is then obtain by a direct inversion of equation (3.18a).

3.4 Fluid solver

When the viscous load q is known from the solid solver, the velocity field at the nodes is

obtained explicitly from the boundary integral equation (2.74), which is discretized on the

same triangular mesh as for the solid problem. The equation (2.74) can be decomposed

as a sum of integrals on the NE elements and 12 Hammer points are then used for the

integration.

The kernels J and K vary respectively as 1/r and 1/r5. When ys → xs, they become

very large and can lead to numerical errors. In order to eliminate these singularies, polar

coordinates centered on xs are used, when ys and xs belong to the same element. This

change of coordinates introduces a Jacobian which goes to 0 as fast as r. In this case, 6

Gauss points are used for integration along each of the polar coordinates.

When the internal and external fluids do not have the same viscosity (λ 6= 1), the

procedure faces problem of convergence. One technique to circumvent this issue is to

solve the fluid problem (Eq. 2.74) by subiterations using a simple relaxation method. At

the subiteration n, we write

vn+1 = ω vn+1
s + (1− ω) vn (3.23)

with

vn+1
s = v∞(xs)−

1
8πµ

∫

St

J(r) · q dS (3.24)

+
1− λ

8π

∫ P V

St

(

vn(ys)− vn(xs)
)

·K(r) · a3(ys) dS.

and ω the relaxation factor, which equals to ω = 1.8/(1 + λ) (Foessel et al., 2011). This

equation is solved setting the convergence criterion at

‖vn+1 − vn‖ < ω × 10−6. (3.25)
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Chapter 4

Numerical method validation

The validation of our numerical method coupling a boundary integral method with a shell

finite element is presented in this section. We first validate the mechanical behavior of

the shell finite elements in large deformation by simulating the inflation of an initially

spherical capsule. To validate the fluid–structure coupling, we then consider the case

of an initially spherical capsule with a small thickness subjected to a simple shear flow

and compare the results with the ones obtained with the membrane model. Finally, we

investigate the convergence of the numerical method in time and space.

4.1 Large isotropic deformation

Before coupling the shell finite element method to the boundary integral method, we verify

if the shell finite elements behave properly in large deformation by inflating a spherical

capsule with a relative wall thickness α ≤ 0.01. Its initial radius ℓ, defined as the length

between the capsule center and the mid–surface, increases to the radius ℓp = (1+a) under

an internal pressure p, where a is the inflation ratio. Numerically, a constant displacement

us = a xs (4.1)

perpendicular to the mid–surface is imposed. The capsule wall is then subjected to an

isotropic traction characterized by the stretch ratio λp = 1 + a. Using the definition of

the membrane and bending deformation tensors as well as the shear vector (Eq. 2.36),

we find that the deformations due to bending and shear are nil. Bending resistance and

transverse shear play no role in this test case. The corresponding analytical model is thus

the one of the inflation of a two–dimensional surface devoid of bending resistance. The

relation between the isotropic principal tensions T and the stretch ratio λp is obtained by

computing analytically the tension from the strain energy functions (Eq. 2.15, 2.16 and

2.17). The tensions are easily derived for a two–dimensional isotropic material and read:

• for the generalized Hooke’s law

T HG = Gs(λ2
p − 1)

1 + νs

1− νs
, (4.2)
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• for the neo–Hookean law

T NH = Gs

(

1− 1
λ6

p

)

, (4.3)

• for the Skalak law

T Sk = Gs

(

λ2
p − 1 + Cλ2

p (λ4
p − 1)

)

. (4.4)

The different parameters are chosen to have the same mechanical behavior in small de-

formation (νs = 0.5 for the generalized Hooke’s law and C = 1 for the Skalak law).

The analytical relation between the internal pressure and the inflation ratio a deduced

from the Laplace’s law is

p =
2T

ℓp
=

2T

(1 + a)ℓ
. (4.5)

Figure 4.1 shows the evolution of the non–dimensional pressure pℓ/Gs obtained numer-

ically as a function of the inflation factor a for the three constitutive laws. It is computed

in the case of two thickness ratio α for a capsule modeled with 5120 MITC3 elements.

The numerical results are in good agreement with the analytical solution (Figure 4.1).

The maximum relative error with respect to the analytical solution of 0.001% with the

generalized Hooke’s law, of 0.04% with the neo–Hookean law and of 0.2% with the Skalak

law.

It is interesting to note that the generalized Hooke’s law is linear under an isotropic

traction, whereas it is strain–hardening under an uniaxial stretching (Figure 2.1).

Analytic

α = 0.01

α = 0.005

0
0

8

2

10

12

4

14

6

0.1 0.2 0.3 0.4 0.5

pℓ

Gs

a

Skalak law

Generalized Hooke’s law

Neo-Hookean law

Figure 4.1: Evolution of the non–dimensional pressure as a function of the inflation factor
a for thickness ratio α = 0.005 and 0.01
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As we use the MITC3 shell finite elements from the Shelddon library developed by

Inria, we assume that the mechanical behavior of these elements under a bending force

has already been validated. As we have only modified the numerical algorithm relative

to the in–plane deformation, we validate only the in–plane deformation of the shell finite

elements with the inflation of an initially spherical capsule.

4.2 Spherical capsule in shear flow

To validate the fluid–structure interaction coupling, we consider a classical test case: the

motion of an initially spherical capsule of thickness ratio α = 0.01 subjected to a simple

shear flow at Cas = 0.6 with the same viscosity for the inner and outer fluids. The

thickness ratio is voluntarily small in order to minimize the influence of the bending

resistance and compare the results obtained with the shell model with the ones obtained

with the membrane model, which have been already validated by Walter et al. (2010).

Regardless of the in–plane constitutive law, we recover the tank–treading motion,

observed previously when a capsule is modeled as a two–dimensional surface devoid of

bending resistance (Ramanujan & Pozrikidis, 1998; Lac et al., 2004; Walter et al., 2010).

At steady state, the capsule has a quasi–ellipsoidal shape, which can be approximated

by the ellipsoid of inertia of the mid–surface St. If we call L1 and L2 the lengths of the

two principal axes of the ellipsoid of inertia in the shear plane, the Taylor parameter D12

defined by

D12 =
L1 − L2

L1 + L2

. (4.6)

provides an estimate of the capsule overall deformation.

Figure 4.2 shows the temporal evolution of the Taylor parameter D12 obtained with

the membrane model (α = 0) and with the shell model when we impose a thickness ratio

α = 0.01. 5120 MITC elements and 1280 P2 elements are used to discretize the capsule

wall in the shell and membrane models respectively. We recover the same temporal

evolution for the Taylor parameter when the mid–surface deformation in the median

plane is governed by the generalized Hooke’s law, the neo–Hookean law or the Skalak law.

The numerical coupling is thus validated.

4.3 Convergence test

To verify the temporal and spatial convergence of the coupling method, we consider

the motion of an initially spherical capsule of thickness ratio α = 0.01 subjected to a

simple shear flow at Cas = 0.6, when the mid–surface deformation in the median plane
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α = 0.01

α = 0

0
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Generalized Hooke’s law

Neo–Hookean law

Figure 4.2: Initially spherical capsule subjected to a shear flow at Cas = 0.6: comparison
of the temporal evolution of the Taylor parameter D12 obtained with the shell model
(α = 0.01) and the membrane model (α = 0).

is described by the generalized Hooke’s law.

No analytical solution of a spherical capsule in a shear flow exists. We take as reference

solution the one obtained with a small time step and a small mesh size. We then compare

the value of the Taylor parameter at steady state D∞

12 found for different mesh sizes and

time steps to the one of the reference solution D∞,ref
12 . We define the relative numerical

error as the difference between the D∞

12 and the reference value D∞,ref
12 :

ǫD12
=
|D∞

12 −D∞,ref
12 |

D∞,ref
12

. (4.7)

To study the spatial convergence of the numerical method, we take as reference value

D∞,ref
12 the value of D∞

12 obtained with the time step γ̇∆t = 1 × 10−4 and the mesh size

corresponding to NE = 8192. The evolution of the relative error as a function of the mesh

size is shown in Figure 4.3a. The coupled numerical procedure appears to converge as

(∆x/ℓ)2. As the difference between NE = 5120 and NE = 8192 is less than 3× 10−4, the

results reported here will be obtained using 5120 MITC3 elements, except when specified

otherwise.

The temporal convergence is then verified using as reference D∞,ref
12 the value of D∞

12

obtained with a time step γ̇∆t = 1 × 10−4 and NE = 5120 elements. The evolution of

the relative error as a function of the dimensionless time step is shown in Figure 4.3b.

We find that the relative error remains small (ǫD12
< 3 × 10−3) and that the numerical

procedure converges linearly in time.
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(a)
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Figure 4.3: Relative numerical error ǫD12
on the Taylor parameter D∞

12 for Cas = 0.6, α =
0.01. (a) Spatial convergence (reference corresponding to γ̇∆t = 1 × 10−4, NE = 8192);
(b) Time convergence (reference corresponding to γ̇∆t = 1× 10−4, NE = 5120).
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Chapter 5

Influence of bending resistance on

the capsule dynamics

In this chapter, we investigate the effect of the wall bending resistance on the dynamics

of an initially spherical capsule subjected to a shear flow. The study was accepted for

publication in the journal "Physics of Fluids" with the title "Influence of bending resistance

on the dynamics of a spherical capsule in shear flow". This study was carried out with

A.-V. Salsac, D. Barthès-Biesel, M. Vidrascu and P. Le Tallec. Additional results on

the influence of the wall constitutive law are presented in section 5.6 when a capsule is

subjected to a simple shear flow or a planar hyperbolic flow.

5.1 Introduction

Capsules, which consist of an internal liquid droplet enclosed by a membrane, have nu-

merous applications in bioengineering, cosmetics and pharmaceutics: they are designed to

protect fragile or volatile substances and to control their liberation in the external media.

They are also used as biomimetic models of cells such as red blood cells. One classical tech-

nique to produce deformable capsules relies on interfacial polymerization of an emulsion.

The fabricated capsules are typically quasi–spherical at rest. The membrane thickness

and mechanical properties depend on the fabrication process (Edwards-Lévy et al., 1994;

Xiang et al., 2008; Chu et al., 2011; Koleva & Rehage, 2012). For many processes such

as interfacial cross-linking, the capsule wall thickness results to be small as compared to

the radius. But determining its exact value remains technically challenging, as it tends

to be sub-micronic.

The dynamics of an initially spherical capsule subjected to a shear flow are of prac-

tical interest and have thus been studied extensively over the past years (see the review

(Barthès-Biesel, 2011)). It has been observed experimentally (Chang & Olbricht, 1993b;

Walter et al., 2000, 2001; Koleva & Rehage, 2012) that at steady state, a spherical capsule

is elongated in the straining direction by the hydrodynamic stresses exerted by the external

flows, while the membrane rotates around the deformed shape because of the flow vortic-

ity. However, for low flow strength, the capsule membrane is compressed in the equatorial

region and thus becomes wrinkled (Walter et al., 2001; Koleva & Rehage, 2012). Mem-
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brane wrinkling and buckling weaken the capsule membrane and may lead to fatigue

breakup. It is thus important to predict these phenomena in order to avoid/provoke the

membrane rupture depending on the application.

In order to understand the complex behavior of a spherical capsule in an external

flow, numerical models of the fluid–structure interaction have been developed where the

membrane is treated as a zero thickness elastic surface devoid of bending resistance

(Barthès-Biesel, 2011). The observed experimental phenomena of elongation along the

viscous strain direction, membrane rotation and tendency towards buckling at low shear

rates are recovered by the numerical models. The models show clearly how the capsule

motion and deformation depend on the flow strength relative to the elastic forces and

on the viscosity ratio between the external and internal fluids (Ramanujan & Pozrikidis,

1998; Lac et al., 2004; Li & Sarkar, 2008; Walter et al., 2010; Foessel et al., 2011).

In order to study the buckling and wrinkling phenomena in a rigorous way, the cap-

sule wall bending stiffness must be accounted for in the model. Most numerical models

that include bending effects have decomposed the wall strain energy into the sum of a

membrane elastic energy and of a bending energy computed from the local curvature

(Hang et al., 2012; Kessler et al., 2008). The bending modulus values, which have been

used, are extremely high and have no relation with the bulk shear modulus of the wall.

Such a decoupled energy-based model is likely to be relevant for objects like the red

blood cells, which have a composite membrane consisting of a lipid bilayer lined by a

protein network. Its relevance can, however, be questioned for artificial capsules with a

thin homogeneous membrane, especially when irrealistic values of bending modulus are

modeled.

Another approach has been to consider the membrane wall as a three–dimensional

homogeneous material and to use the thin shell approximation. Le & Tan (2010) have

developed such a thin shell model, but they have restricted the analysis to a Kirchhoff–

Love kinematical assumption (i.e. no transverse shear) and only considered one small

value of wall thickness. The effect of the wall bending resistance on the dynamics of a

capsule suspended in an external flow is thus still an open question.

The objective of the study is to analyze the deformation of an initially spherical capsule

in a simple shear flow, assuming that the wall is thin and made of a three–dimensional

homogeneous elastic material with uniform thickness that resists both membrane and

bending deformations. The equations governing the problem are solved numerically cou-

pling a boundary integral method to compute the flow of the internal and external liquids

with a shell finite element method to compute the deformation of the capsule wall, as

outlined in sections 5.2 and 5.3. We show how, for a given wall material, the thickness

influences the deformation under a given flow strength in section 5.4 and analyze which
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physical phenomena govern the capsule global deformation. We finally discuss the for-

mation of wrinkles on the membrane and show how their wavelength is related to the

bending resistance and correlatively to the wall thickness.

5.2 Problem formulation

We consider an initially spherical capsule enclosed by a three–dimensional homogeneous

incompressible wall of thickness αℓ (α < 1). The capsule radius ℓ is measured from the

capsule mid–surface St, which is located at the middle of the wall thickness. The wall is

made of a material, which is supposed to be hyperelastic at moderate deformation with

bulk shear modulus G and Poisson ratio ν = 1/2. The capsule is suspended in a simple

shear flow in the xy–plane with undisturbed velocity field

v∞ = γ̇y ex, (5.1)

where γ̇ is the shear rate. The inner and outer fluids have the same viscosity µ and

density.

By convention, all quantities are denoted by capital letters in the reference state and

by lowercase letters in the deformed state. The surface tensor components are denoted

with Greek indices and the 3D tensor components with Latin indices. We adopt the

Einstein summation convention on repeated indices.

5.2.1 Wall mechanics

Due to the small mass of the capsule wall, all inertia effects are neglected when solving

for the wall deformation. We assume the wall to be sufficiently thin to be modeled as a

thin shell with mid–surface St, as described, among others, by Chapelle & Bathe (2011)

and briefly reviewed thereafter. The principle of the thin shell consists of evaluating all

the quantities of interest on the mid–surface.

The position of a material point in the shell is defined by the independent curvilinear

coordinates (ξ1, ξ2, ξ3). In the reference non–deformed state (time t = 0), the position of

a point M of the mid–surface is given by

OM = ϕ(ξ1, ξ2) (5.2)

with O the chosen origin. It is convenient to introduce the local covariant base (A1, A2, A3)

defined as

Aα =
dϕ(ξ1, ξ2)

dξα
= ϕ,α and A3 =

A1 ×A2

‖ A1 ×A2 ‖
, (5.3)
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where A3 is the unit normal vector. The contravariant base (A1, A2, A3) is defined by

Aα ·Aβ = δα
β with δα

β the Kronecker tensor and A3 = A3. The same quantities are defined

in the deformed state using lowercase letters: the local covariant and contravariant bases

are respectively denoted (a1, a2, a3) and (a1, a2, a3). In the reference configuration, the

three–dimensional position X of a material point within the capsule wall is then

X(ξ1, ξ2, ξ3) = ϕ(ξ1, ξ2) + ξ3A3, (5.4)

where |ξ3| ≤ αℓ/2. In the deformed configuration, the new position x of a material point

differs from the original position X through an unknown displacement field u:

x(X, t) = X + u(X, t). (5.5)

The thin shell theory (Chapelle & Bathe, 2011) assumes that the displacement field

satisfies the Reissner–Mindlin kinematic assumption, i.e. a material line initially orthog-

onal to the mid–surface remains straight and unstretched during deformation but does

not remain orthogonal to the deformed mid–surface. All the terms depending on (ξ3)2

are thus neglected in the expression of the displacement u, which can then be written as

u(ξ1, ξ2, ξ3, t) = us(ξ1, ξ2, t) + ξ3 θλ(ξ1, ξ2, t) aλ(ξ1, ξ2, t). (5.6)

The first term represents the displacement of the mid–surface at coordinates (ξ1, ξ2). In

the second term, the angles θ1 and θ2 are the rotation angles of the line passing by the

point (ξ1, ξ2) of the mid–surface and perpendicular to the latter around the tangential

vectors a2 and a1, respectively. To simplify the notations in the following, we introduce

the rotational surface vector θ(ξ1, ξ2, t) = θλ(ξ1, ξ2, t) aλ(ξ1, ξ2, t).

The deformation gradient F =
∂x

∂X
and the Green–Lagrange strain tensor e =

1
2

(F T ·
F − I) induced by this displacement field are then deduced from Eq. (5.5-5.6) (see Eq.

2.35). The same asymptotic analysis (Chapelle & Bathe, 2011) also shows that the shell

is undergoing plane stress at first order.

We assume that the wall material is hyperelastic: the second Piola–Kirchhoff stress

tensor Σ inside the wall is a given function of the Green–Lagrange strain tensor through

the strain energy density function. For a linear isotropic material, the stress-strain rela-

tionship reduces to the generalized Hooke’s law

Σ = 2 G
(

e +
ν

1− ν
tr e

)

. (5.7)

The Cauchy stress tensor σ, which contains forces per unit area of deformed material, is
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related to the Piola–Kirchhoff stress tensor by

σ =
1

det F
F · Σ · F T . (5.8)

It follows that, even for a linear material, σ is a non–linear function of strain.

The wall equilibrium equations are then



















∇ · σ = 0 inside the wall,

σ · a3 = q+ on the external wall surface S+
t ,

σ · a3 = −q− on the internal wall surface S−

t ,

(5.9)

where q+ (respectively q−) is the viscous load per unit deformed area exerted by the

external (respectively internal) fluid flow. They can be rewritten using the principle

of virtual work, which dictates that the work done by the external loads acting on a

deformable body are equal to the virtual change in internal strain energy. Let V be the

Sobolev space H1(St,R
3). For any virtual displacement ûs ∈ H1(St,R

3) satisfying the

Reissner–Mindlin assumption (Eq. 5.6) and any virtual rotation θ̂ ∈ H1(St,R
2), we have

from Eq. (5.9)

∫

S
+

t

û (ûs, θ̂) · q+ dS −
∫

S
−

t

û (ûs, θ̂) · q− dS =
∫

V
ê (ûs, θ̂) : σ dV, (5.10)

where V is the shell wall volume in the deformed state, û an arbitrary kinematically

admissible virtual displacement and ê the corresponding virtual strain tensor. On S+
t ,

the virtual displacement reads

û (ξ1, ξ2, t) = ûs(ξ
1, ξ2, t) +

αℓ

2
θ̂ (ξ1, ξ2, t), (5.11)

+αℓ/2 being replaced by −αℓ/2 on S−

t .

Since the capsule wall is treated as a thin shell for both the real and virtual displace-

ment fields, the virtual work of the external load can be expressed in terms of a load q

evaluated on the mid–surface

∫

St

û (ûs, θ̂) · q dS =
∫

V
ê (ûs, θ̂) : σ dV, (5.12)

where q is the jump of viscous traction forces exerted by the fluids. The difference between

the membrane and shell models is that, in the membrane model, all the terms which are

O(α) are ignored, so that the membrane displacement is only given by us(ξ1, ξ2, t). In

the shell model, the rotational and three–dimensional effects across the wall thickness are

taken into account in the displacement (Eq. 5.6). These effects are included in the right–
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hand side term of Eq. (5.12) and lead to a resistance to bending, which is quantified by a

bending modulus Mb. For a homogeneous material that follows the generalized Hooke’s

law (Eq. 5.7), Mb is given by

Mb =
G

6 (1− ν)
(αℓ)3. (5.13)

It follows that for the same deformation of the mid–surface, the expression of the load q

is different for the membrane and shell models.

5.2.2 Internal and external flows

Owing to the small capsule size, the Reynolds number Re = ρℓ2γ̇/µ is very small. The

internal and external flows are thus governed by the Stokes equations. For thin walls,

when the inner and outer fluids are of equal viscosity, the local velocity of the mid–

surface points is then equal to the following integral of the viscous traction jump over the

deformed capsule surface St

∀xs ∈ St, v(xs) = v∞(xs)−
1

8πµ

∫

St

(

I

‖ r ‖ +
r ⊗ r

‖ r ‖3

)

· q(ys) dS, (5.14)

where v∞ is the undisturbed flow velocity. The vector r = xs − ys is the distance vector

between the point xs, where the velocity vector is calculated, and the point of integration

ys located on the surface St. The wall and fluid mechanics are coupled through q and

through the kinematic condition, which relates the wall velocity to the time derivative of

the displacement field at the capsule mid–surface:

∀xs ∈ St, v
(

xs(ξ1, ξ2, t)
)

=
∂

∂t
us(ξ1, ξ2, t). (5.15)

Note that the velocities of the inner and outer fluids must be equal in order to keep the

membrane shear finite.

5.2.3 Problem parameters

The capsule dynamics are governed by the relative wall thickness α and by the bulk

capillary number

Cav =
µγ̇

G
, (5.16)

which compares the viscous to the elastic forces. When the wall is infinitely thin (α≪ 1),

it is customary to introduce a surface shear modulus Gs = Gαℓ, to which corresponds a
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surface capillary number

Cas =
µγ̇ℓ

Gs

=
Cav

α
. (5.17)

This surface capillary number is classically used to study the dynamics of capsules without

bending resistance. When the bending resistance of the wall is accounted for, a bending

number Kb can be introduced to measure the relative importance of bending and shearing

effects:

Kb =
Mb

αGℓ3
=

Mb

Gsℓ2
. (5.18)

When we consider the capsule wall to be composed of a homogeneous incompressible

material, the bending number is simply Kb = α2/3 as predicted from Eq. (5.13).

5.3 Numerical method

To solve the fluid–structure interaction problem (Eq. 5.7, 5.8, 5.12, 5.14, 5.15), we itera-

tively couple (i) a shell finite element method to solve the solid problem (i.e. Eq. 5.7, 5.8,

5.12) for the capsule deformation knowing the mid–surface displacement us to find the

viscous load q acting on the capsule wall, and (ii) a boundary integral method to compute

the local velocity of the mid–surface points using Eq. (5.14) for a given deformed capsule

geometry and the viscous load transferred by the solid solver. We then update the posi-

tion us of the mid–surface by integrating in time Eq. (5.15) using a first–order explicit

Euler scheme. The underlying philosophy of the method is similar to the one designed by

Walter et al. (2010) to simulate the dynamics of a capsule devoid of bending resistance.

But, when the wall is modeled as a thin shell with finite thickness and bending resistance,

the three-dimensional displacement field u is no longer known at the beginning of each

iteration (only us is): the rotation vector θ first needs to be solved for.

Since the evolution equation (Eq. 5.15) is integrated in time with an explicit scheme,

the numerical method is stable only for sufficiently small time steps ∆t. The stability

criterion

γ̇∆t < O
(

∆x Cas

ℓ

)

, (5.19)

previously defined by Walter et al. (2011) for a capsule without bending resistance remains

valid, ∆x denoting the mesh size. The introduction of bending does not modify the

stability analysis, since the bending terms are imposed to be in equilibrium when solving

the equilibrium of the microcapsule wall.

61



Influence of bending resistance on capsule dynamics

NE 320 512 1280 2048 5120 8192
NN 162 258 642 1026 2562 4098

∆x/ℓ 0.3 0.23 0.15 0.12 0.075 0.06

Table 5.1: Number of nodes NN and characteristic mesh size ∆x/ℓ as a function of the
number of elements NE . The meshes obtained from an octahedron are written in boldface.

(a) (b)

Figure 5.1: Typical meshes, respectively with 8192 and 5120 elements, obtained from the
initial inscription of (a) an octahedron or of (b) an icosahedron in a sphere.

5.3.1 Discretization of the capsule wall

At time t = 0, the undeformed mid–surface of the capsule wall is discretized with linear

triangular shell elements obtained by inscribing either an icosahedron (regular polyhedron

with 20 triangular faces) or an octahedron (regular polyhedron with 8 triangular faces) in

a sphere, and sequentially subdividing the triangular elements and projecting the resulting

nodes on the spherical mid–surface. We denote NE and NN the number of elements and

nodes respectively and ∆x/ℓ the characteristic mesh size. The numbers of nodes and the

average mesh size used in this study are given in Table 5.1 as a function of the number of

elements. The mesh obtained from an octahedron is symmetrical about two meridians,

while the mesh obtained from an icosahedron is more homogeneous (Figure 5.1).

5.3.2 Shell finite element procedure

The wall mid–surface equilibrium problem (Eq. 5.7, 5.8, 5.12) is treated with the shell

finite element library Shelddon designed by Inria1. The shell finite element solver is

coupled with the fluid solver (Walter et al., 2010, 2011; Foessel et al., 2011) by means of

a Parallel Virtual Machine protocol.

The wall mid–surface is discretized with triangular shell elements of the MITC family

(Mixed Interpolation Tensorial Components) with three nodes (one at each vertex), which

1. The library is registered at the Agence pour la Protection des Programmes under ref:
IDDN.FR.001.030018.000.S.P.2010.000.20600. The base of the program is open source and available
online: www-rocq.inria.fr/modulef
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are typically referred to as MITC3. Their formulation is based on standard linear shape

functions λ(p) (p ∈ {1, 2, 3}) interpolating both the mid–surface displacement us and the

rotations θλ. The unit normal vector a
(p)
3 is calculated at each node p. The position of a

point of the wall is determined by the local Cartesian coordinates (r, s, z), where (r, s) are

the intrinsic coordinates in the plane element (defined such that r, s and 1−r−s ∈ [0, 1])

and z is the coordinate along a3 (z ∈ [−1, 1]). The position vector x a node p inside an

element thus reads

x(t) =
3
∑

p=1

λ(p)(r, s)

(

x(p)
s (t) + z

αℓ

2
a

(p)
3 (t)

)

, (5.20)

and the corresponding virtual displacement

û =
3
∑

p=1

λ(p)(r, s)

(

û(p)
s + z

αℓ

2
θ̂(p)

)

. (5.21)

The MITC technique is based on separate interpolations of the in–plane and out–of–

plane components (e.g. eα3 components) of the strain tensor, which are then connected at

specific tying points. The MITC shell finite elements are shown to behave properly both

for bending and for membrane dominated problems and satisfy the following properties:

• The finite element discretization leads to no spurious zero energy mode when solving

the problem.

• The finite element solutions converge to the solution of the mathematical model,

when the mesh size ∆x/ℓ tends to zero.

• The shell is free of shear and membrane locking.

• The solution accuracy is independent of the shell thickness parameter.

• The matrices do not depend on the element orientation.

Details on the MITC technique can be found in Lee & Bathe (2004) and on the discretiza-

tion of the equations in Chapelle & Bathe (2011).

Let v
(p)
Xj

denote the value of the jth Cartesian component of any vector v at node p

and {v} the array of size 3NN containing the Cartesian components of the vector nodal

values. The wall equilibrium equation (Eq. 5.12) can be discretized element–wise as:

∑

el

û
(p)
Xj

(∫

Sel

λ(p)λ(q)dS
)

q
(q)
Xj

=
∑

el

∫

Vel

êαβσαβdV. (5.22)

The discretization of the right–hand–side of Eq. (5.12) is more complex than in the case of

the left–hand–side, since the Green-Lagrange strain tensor and the second Piola-Kirchhoff
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stress tensor have to be expressed according to the nodal displacements. More details can

be found in Batoz & Dhatt (1992) (p. 324 - 325).

After assembling the arrays and matrices across the mesh elements, the discretized

form of Eq. (5.12) becomes

{û}T [M ] {q} = {û}{R} ({us}, {θ}) , (5.23)

where [M ] is the so-called mass matrix and the vector {R} contains the elastic coefficients

of the wall material.

As the equation must be satisfied for any virtual displacement, it can be simplified as

[M ] {q} = {R} ({us}, {θ}) ,

or more precisely, by separating the membrane degrees of freedom from the rotational

degrees of freedom,

{ {R}s ({us}, {θ})− [M ]s {q} = {0}s, (5.24a)

{R}θ ({us}, {θ}) = {0}θ. (5.24b)

In this system, the mid–surface displacement degrees of freedom {us} are known from the

solution xs of the fluid problem and the integration of Eq. (5.15), while the viscous loads

{q} and the rotations {θ} are unknown. To solve this system, we first solve the nonlinear

equation (5.24b) in {θ} by a Newton’s method and then obtain the load exerted by the

fluids on the membrane by a direct inversion of Eq. (5.24a).

5.3.3 Numerical accuracy and convergence

To verify the temporal and spatial convergence of the coupling method, we consider the

motion of an initially spherical capsule of thickness ratio α = 0.01, subjected to a simple

shear flow at Cas = 0.6. At steady state, the capsule mid–surface takes a quasi–ellipsoidal

shape, which can be approximated by its ellipsoid of inertia. If we call L1 and L2 the

lengths of the two principal axes of the ellipsoid of inertia in the shear plane (Figure 5.2),

the capsule deformation at steady state can be measured by the Taylor parameter D∞

12

D∞

12 =
L1 − L2

L1 + L2

. (5.25)

There is no analytical solution for the large deformation of a spherical capsule in a shear

flow. To study the spatial convergence of the numerical method, we thus take as reference

value D∞,ref
12 the value of D∞

12 obtained with the smallest time step (γ̇∆t = 1× 10−4) and
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Figure 5.2: Representation in the shear plane (ex, ey) of the ellipsoid of inertia of the
deformed mid–surface of an initially spherical capsule. L1 and L2 are the lengths of the
two principal axes in the shear plane. The angle Θ gives the inclination of the deformed
capsule.
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Figure 5.3: Relative numerical error ǫD12

based on the Taylor parameter D∞

12 for Cas =
0.6, α = 0.01. (a) Spatial convergence (reference corresponding to γ̇∆t = 1× 10−4, NE =
8192); (b) Time convergence (reference corresponding to γ̇∆t = 1× 10−4, NE = 5120).

the most refined mesh size (NE = 8192) at γ̇∆t = 4, at which the steady state is reached.

We define the relative numerical error as

ǫD12
=
|D∞

12 −D∞,ref
12 |

D∞,ref
12

. (5.26)

The evolution of the relative error as a function of the mesh size is shown in Figure 5.3a.

The coupled numerical procedure appears to converge as (∆x/ℓ)2. We note that the

difference between NE = 5120 and NE = 8192 is less than 3× 10−4. This justifies using

only 5120 elements in the results reported here (except when specified otherwise).

The temporal convergence is then verified using as reference D∞,ref
12 the value of D∞

12

obtained for γ̇∆t = 1 × 10−4 and NE = 5120. The evolution of the relative error as a

function of the dimensionless time step is shown in Figure 5.3b. We find that the relative

error remains small (ǫD12
< 3×10−3) and that the numerical procedure converges linearly

in time.
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O

Figure 5.4: Steady shape of an initially spherical capsule with α = 0 subjected to a simple
shear flow (NE = 8192): (a) Cas = 0.1; (b) Cas = 0.6; (c) Cas = 1.2. The grey level
represents the repartition of the normal load, where the maximum value

(

q · A3/Gs

)

max
is equal to (a) 0.5, (b) 3 and (c) 4.5.

5.4 Effect of wall bending resistance on the deforma-

tion of a capsule

We investigate the influence of two parameters on the dynamics of an initially spherical

capsule subjected to a simple shear flow: the capillary number and the wall thickness

(or equivalently the bending number). In the following, all the results (capsule profiles,

deformation, etc.) pertain to the deformed capsule mid–surface.

5.4.1 Deformation of a capsule with no bending resistance

An initially spherical capsule with no bending resistance (α = 0) subjected to a sim-

ple shear flow is elongated in the straining direction (Ramanujan & Pozrikidis, 1998;

Lac et al., 2004; Li & Sarkar, 2008; Walter et al., 2010). This is illustrated in Figure

5.4 for a capsule with a membrane satisfying the generalized Hooke’s law. At low flow

strength, compressive tensions (forces per unit curved length in the capsule surface) arise

in the central region during the transient phase and persist at steady state. They lead

to membrane buckling and to the formation of wrinkles with a half–wavelength that is a

function of the grid spacing (Figure 5.4a). The wrinkles are purely numerical, as no wall

bending resistance is contained in the model, but the location where they occur is physi-

cal: it correlates with regions where the membrane is undergoing compression. When the

surface capillary number increases above the critical value CasL ∼ 0.4 − 0.45 (irrespec-

tive of the wall constitutive law, because the deformation is still small), the capsule is

more elongated: the tensions in the membrane increase and become all positive, so that

wrinkles no longer appear at steady state (Figures 5.4b-c).
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Figure 5.5: Capsule with wall material defined by Cav = 0.05: influence of wall thickness
(a) on the mid–surface profile in the shear plane and (b) on the mid–surface deformation
at steady-state D∞

12.

5.4.2 Effect of wall thickness

In order to study the influence of the wall thickness on the capsule deformability, we

simulate capsules made of the same homogeneous 3D material but with different wall

thicknesses, subjected to a linear shear flow corresponding to Cav = 0.05. The profile

of the capsule mid–surface in the shear plane is shown in Figure 5.5a. It shows that

the thinner the wall, the more elongated the capsule becomes under the influence of

the external flow. The capsule deformation decreases with the wall thickness. The tip

curvature also decreases, so that the capsule has a more rounded shape. The steady–

state deformation D∞

12 of the capsule mid–surface was computed from the corresponding

ellipsoid of inertia. Figure 5.5b indicates that, for a given value of Cav, i.e. for a given

wall material, the deformation decreases as the thickness increases.

We now study the combined effects of Cav and α. For a given wall thickness, the

deformation increases when Cav increases, since the capsule is more elongated by the

external flow (Figure 5.6a). If the wall thickness is now increased, we find again that

the deformation decreases. Increasing the wall thickness thus has the drastic effect of

preventing the capsule from deforming. It is interesting, however, that, if one plots the

deformation as a function of the surface capillary number Cas, all the results fall onto

one curve, which is the one obtained for a membrane wall devoid of bending resistance

(Figure 5.6b). This means that even under large deformation, the bending resistance

has a negligible effect on the overall capsule deformed profile and that the main mode

of deformation results from the stretching of the mid–surface St in its plane (membrane

mode).
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Figure 5.6: Mid–surface deformation at steady state D∞

12 as a function of (a) Cav and of
(b) Cas for different thicknesses.

5.4.3 Membrane buckling at low flow strength

We now study the effect of bending resistance (or equivalently of shell thickness) on the

behavior of a capsule for a constant Cas. We consider the case Cas = 0.1, which is below

the critical value CasL, in order to be in the regime where buckling is known to occur

for zero–thickness capsules. The wall thickness is varied between α = 0.005 and 0.02.

The corresponding bulk capillary number Cav is small and varies between 5 × 10−4 and

2× 10−3.

When the capsule wall is treated as a thin shell, it is still subjected to compressive

tensions in the central region as it was observed in the membrane model. As a consequence,

buckling may occur at steady state depending on the bending resistance of the capsule

wall (Figure 5.7). For very small thicknesses (e.g. α = 0.003), the wrinkles that can

be observed in Figure 5.7a appear at the same location and with the same pattern as

those in Figure 5.4a, which correspond to a capsule devoid of bending stiffness. When

the wall thickness is increased, the bending resistance increases and fewer wrinkles are

formed (Figure 5.7b-d). For α ≥ 0.02, the wall is too thick for wrinkles to form (Figures

5.7e, 5.7j), even if it is subjected to compressive tensions. It is thus possible to prevent

buckling by increasing the wall thickness (or equivalently the bending resistance).

5.4.4 Wrinkle analysis

It is not very easy to study the geometric characteristics of the wrinkles (amplitude,

wavelength), as the capsule is a three–dimensional closed object. We first consider the

same case as in the previous subsection of a capsule subjected to a surface capillary

number Cas = 0.1. The capsule has a thickness ratio α = 0.01. The most reproducible

technique is to study the wrinkles in the yz–plane. Their characteristics are found from
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Figure 5.7: Steady profiles of an initially spherical capsule subjected to a simple shear flow
at Cas = 0.1 for different wall thicknesses α (NE = 8192). (a) to (e): projection in the
shear xy–plane; (f ) to (j): projection in the shear xz–plane. The grey levels represent the
repartition of the normal load, the white spots on views (f ) to (j) are a lighting artefact.

the capsule cross–section Syz within the plane: we subtract from the in–plane capsule

profile the profile of the ellipsoid of inertia in the same plane. The capsule profile is

shown in Figure 5.8a in terms of the polar coordinates (ρ, θ), such that the shear plane

is located at π = 0,−1. The radius difference ∆ρ/ℓ between the two curves is shown in

Figure 5.8b as a function of the arc length s/ℓ along Syz, where s = 0 when θ = 0.

One must note that the profile oscillations ∆ρ/ℓ are determined from the profile inter-

section with the yz–plane, which cuts through the surface grid and intersects the elements

randomly. It follows that the ∆ρ/ℓ versus s/ℓ curve has an uneven spatial discretization

with mean value ∆x/2ℓ. In particular for the case shown in Figure 5.8b, we have between

9 and 12 points per oscillation, which is enough to determine a wavelength.

To determine a characteristic wrinkle wavelength at a given time γ̇t, we measure the

distance between two successive extrema for the wrinkles located near the shear plane

(s/ℓ ∈ [−1.28, +1.28] - see the box in Figure 5.8b), which is the zone where the wrinkles

are the most apparent, and compute the wrinkle mean wavelength λw/ℓ. The wrinkle

wavelength λe in the equatorial plane of the capsule is then λw cos Θ, where Θ is the angle

between the capsule long axis in the shear plane and the x–axis at steady state (Figure

5.2). A characteristic wrinkle amplitude A/ℓ is determined from the wrinkle located at

s = 0 (wrinkle with the maximum amplitude).

Prior to studying the wrinkle characteristics, we first need to find the mesh refinement

for which the wrinkle wavelength no longer depends on the mesh size. To do so, we

determine the various wavelengthes of the wrinkles in the region of interest (boxed region

shown in Figure 5.8b) and repeat the procedure at four instants of time (γ̇t = 3, 3.5, 4,
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Figure 5.8: Membrane wrinkles for Cas = 0.1, α = 0.01, NE = 8192, ∆x/ℓ = 0.06. (a)
Capsule mid–surface profile in the yz–plane (the dotted line represents the shear plane);
(b) radius difference between the ellipsoid of inertia and the mid–surface in the yz–plane.
The arc length is measured along the profile with s = 0 when θ = 0, the points represent
intersections with the grid.
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Figure 5.9: Influence of the mesh size ∆x/ℓ on the space- and time-average wrinkle
wavelength (Cas = 0.1, α = 0.01).
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4.5) to cover a quarter of the tank-treading period. Figure 5.9 shows the evolution of the

space- and time-average value of the wrinkle wavelengthes as a function of the mesh size.

The error bars correspond to the value of standard deviation, which is about 10% for

∆x/ℓ ≤ 0.12 (NE ≥ 2048) and 30% for ∆x/ℓ = 0.15 (NE = 1280). We have added a very

fine mesh (NE = 20480, NN = 10242, ∆x/ℓ = 0.037) for the sake of completeness. For a

coarse mesh (e.g. ∆x/ℓ = 0.15, NE = 1280), the rigidity due to the surface elements is

dominant, so that the wrinkle wavelength (λe/ℓ ∼ 0.36) is difficult to determine with great

precision, but is approximately equal to twice the element spacing. When the number of

elements increases, the mean wrinkle wavelength decreases and tends towards a limiting

value λe/ℓ ∼ 0.2. Note that this plateau value becomes roughly independent of the mesh

size when ∆x/ℓ ≤ 0.06 (NE ≥ 8192) and that it is much larger than the grid point

spacing. The difference between the mean wavelength values computed with ∆x/ℓ = 0.06

(NE = 8192) and ∆x/ℓ = 0.037 (NE = 20480) is less than 3.6×10−2, which is of the same

order of magnitude as the standard deviation. In the following, the results will therefore

be obtained by considering a mesh with NE = 8192 elements. The most refined mesh

(NE = 20480) indeed requires several weeks of computation to reach the steady state.

One can finally note that Figure 5.9 indicates that λe/ℓ ∼ 0.2 is the physical buckling

wavelength of a shell of thickness ratio α = 0.01.

The influence of the thickness ratio on λe is shown in Figure 5.10a at γ̇t = 4.5 for

Cas = 0.1. We find that λe increases with α. The wall equilibrium is thus unstable and

buckling occurs at the nodes where small numerical errors create a disturbance. If one

increases the thickness (i.e. bending resistance), the wrinkles have a higher wavelength.

Their amplitude remains about constant for low values of bending resistance (Figure

5.10b); it, however, strongly decreases hereafter when the bending resistance is increased,

until being nil when the wrinkling phenomenon stops (α ≥ 0.02 for Cas = 0.1).

In order to determine whether the surface capillary number Cas influences the wrinkle

wavelength, we have also considered the cases (Cas = 0.07, α = 0.005, 0.01, 0.015) and

(Cas = 0.2, α = 0.004). As shown in Figure 5.10a, the corresponding wrinkle wavelength

follows the same trend for all the values of Cas, and only depends on the relative wall

thickness α. This result is not unexpected, as the buckling behavior of the wall depends on

its bending resistance. The wall thickness above which wrinkles no longer form, however,

decreases when the surface capillary number Cas increases. The amplitude is indeed nil

for α ≥ 0.02 at Cas = 0.1 (Figure 5.10b) and for α ≥ 0.005 at Cas = 0.2. This is due to

the fact that, as Cas increases, the wall deformation increases and the amplitude of the

compressive tensions decreases (recall that for a flow strength larger than CasL, there is

no more compression and all tensions are positive). Consequently, as Cas is increased, the

compression on the wall decreases, so that less thickness is needed to withstand buckling.
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Figure 5.10: Influence of the shell thickness on (a) the wrinkle mean wavelength and (b)
amplitude for different values of Cas.

5.5 Discussion and conclusion

The dynamics of an initially spherical capsule subjected to a linear shear flow has been

studied numerically by coupling a shell finite element method with a boundary integral

method to account for three–dimensional homogeneous wall properties and model the wall

bending resistance. This method allows to study the influence of small thickness on the

capsule deformation. It is numerically stable and free of locking.

We observe that, for a given wall material, the capsule deformability decreases when

the wall thickness increases. However, if we consider only the dynamics of the shell

mid–surface, we find that the overall deformation of the capsule depends only on the

surface capillary number with no influence of the bending resistance. This means that the

stretching of the mid–surface is the prevailing phenomenon. This is an important result,

because it validates the use of a simple membrane model to compute the deformation of

a capsule: such a model is indeed much faster and easier to run than a full shell model.

Note that, if we use Cas as the main parameter for given flow strength and capsule size,

the bulk elastic modulus G implicitly decreases when α is increased. This means that

the larger α, the softer the material. This is probably the reason why we see no effect of

thickness on the deformation curve in Figure 5.6b.

The sole dependence on Cas may also well be an effect of the facts that the capsule is

initially spherical and that its core is entirely filled with an incompressible liquid. It can

thus only deform by increasing its surface area, as its volume is constant. The capsule

deformation thus results from elastic stretching of the wall. It follows that a simple

membrane model is adequate to model the elastic behavior of spherical capsules, unless

one is specifically interested in the post–buckling behavior. However, this may not be true

for capsules which are initially non–spherical: such particles have an excess surface area

compared to the enclosed volume and can change their geometry at small energy cost. In
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this case, bending effects may become preponderant compared to surface stretching.

Other authors such as Pozrikidis (2001), Le (2010) and Hang et al. (2012) have ob-

served that the bending resistance reduces the capsule deformability at a given Cas. But

they have all considered very large values of bending resistance that presently correspond

to a wall thickness ratio α of 0.3 in the lowest case and up to 0.9: they, hence, do not

respect the hypothesis of thin shell. It is difficult to imagine an existing homogeneous (or

even composite) material that has both a very low shear elastic modulus and a very high

bending modulus. The case of the red blood cell membrane is the exception, but its wall

can hardly be considered as being homogeneous.

Even if a membrane model can be used to predict the post–buckling overall shape of

a thin spherical capsule, a shell model is needed to analyze the formation of the wrinkles,

which appear at low Cas. We have found that the wrinkle wavelength depends only on

the wall thickness ratio α (or equivalently the bending number Kb) and increases with it.

The wavelength can be correlated to the bending stiffness either linearly:

λe/ℓ = 12.7α + 0.11 (5.27)

or by a power function:

λe/ℓ = 2.5
√

α = 3.3 (Kb)1/4 (5.28)

with a correlation coefficient R2 = 0.98 in both cases. It is difficult to decide numerically

between the two correlations, as it takes very long computational times to go below

λe/ℓ = 0.2. Indeed, this requires to impose very small wall thickness (αℓ < 0.003) and to

use an extremely fine mesh with a correspondingly small time step (Eq. 5.19). However

in principle, the wrinkle wavelength should decrease to the asymptotic value of zero for

α = 0, which corresponds to a membrane with no resistance to bending. So it would

seem that the correlation (Eq. 5.28) is physically more realistic than (Eq. 5.27). It is

interesting to note that Cerda & Mahadevan (2003), who studied a thin homogeneous

membrane stretched between two clamped ends, have predicted that the wavelength λe/ℓ

of the wrinkles forming on the sheet is a function of the square root of the thickness ratio

and have found the correlation law

√

8π

3
√

α = 2.9
√

α = 3.8 (Kb)1/4. The small difference

between the factors of proportionality between Cerda and Mahadevan’s correlation law

and ours (Eq. 5.28) is due to the difference in geometry and boundary conditions. It seems

to indicate that the wavelength of the wrinkles forming along the capsule can be predicted

from a simple energy balance between bending and stretching under the constraint of

the constitutive law of the wall material. However, if this balance is relatively simple

to establish analytically for a flat membrane, it is much harder to find for a spherical

membrane subjected to viscous shear forces. A numerical model is thus necessary in the
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Figure 5.11: Polysiloxane capsule subjected to a simple shear flow. Wrinkles (inside
the rectangle) appear in the central region due to compressive tensions. Images from
Koleva & Rehage (2012), reproduced with the permission of The Royal Society of Chem-
istry. The capillary number Ca denoted on the pictures corresponds to the surface capillary
number Cas.

latter case.

This result is essential from both a fundamental and an applied point of view. It

can be used in practice to determine the capsule wall properties (thickness, surface shear

modulus and bending modulus) from experiments, in which an initially spherical capsule is

subjected to a linear shear flow with Cas < CasL. The idea is to first compute the Taylor

parameter D12 from an image of the deformed capsule shape acquired in the shear plane.

The capillary number is deduced from the curve giving D12 as a function of the surface

capillary number (Figure 5.6b). Its value is independent of the material behavior, as the

deformation is small at low flow strength. The surface shear modulus is then deduced

from the definition of the surface capillary number Cas (Eq. 5.17) and the experimental

values of γ̇ and µ. The second part of the procedure consists in measuring the wavelength

of the wrinkles on the experimental image of the capsule. Knowing the wavelength λe,

the wall thickness ratio can be estimated from Figure 5.10a or Eq. (5.28) and the bending

modulus deduced from Eq. (5.13).

Using this method, we have analyzed the wrinkling processes of the polysiloxane cap-

sules studied by Koleva & Rehage (2012), which have a radius equal to ℓ = 163 µm (Fig-

ure 5.11). The capsule surface shear modulus is estimated from the small deformation

asymptotic relation (Barthès-Biesel, 2011)

D12 =
25
12

µγ̇ℓ

Gs

. (5.29)

and found to be equal to 2.19×10−1 N.m−1. The wavelength of the folds can be measured

to be roughly 10.4 - 12.9 µm. We find a value of wall thickness equal to αℓ ∼ (107 −
163)× 10−9m, and a bending modulus Mb ≈ 0.8− 1.9× 10−3 N.m. The present analysis

thus offers an interesting technique to characterize the mechanical properties of capsules
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of micrometric size and to provide an estimation of an apparent mean thickness of the

wall.

In principle, the results of this paper are restricted to thin capsules. In the previous

paragraph, we have just shown that the wall thickness of interface cross-linked capsules

is about a thousand times smaller than the radius, which confirms the validity of the

thin-shell approximation to study such artificial capsules If we want to model thicker

capsules, one should probably switch to a three–dimensional model for the capsule wall,

an endeavor which is outside the scope of this paper.

5.6 Additional results: influence of constitutive law

5.6.1 Capsule in shear flow

The constitutive law governing the behavior of the mid–surface in the median plane has

been modified to study its influence on the dynamics of a spherical capsule with bending

resistance in shear flow. A Skalak or a neo-Hookean law is used to model the membrane

effects, combined with the generalized Hooke’s law for the bending effects. For the sake

of brevity, we denote the type of wall only by the constitutive law, which describes the

behavior of the mid–surface in the median plane.

When capsules are made of the same homogeneous three–dimensional material but

have different thicknesses at Cav = 0.01, we observe again that the thinner the wall,

the more elongated the capsule becomes under the influence of the external flow (Figure

5.12). We observe, however, an influence of the constitutive law on the mid–surface

deformation of the capsule mid–surface: at α = 0.01, the capsule is more elongated with

a neo–Hookean wall than with a Skalak law. As the neo–Hookean law is strain–softening

and the Skalak law strain–hardening, for the same imposed stress, the deformation of

the capsule with the neo–Hookean wall is higher than the one with a Skalak wall. The

decrease of the capsule mid–surface deformation D∞

12 at steady state is represented in

Figures 5.13 for different Cav and it is not surprising to observe that for a given wall

thickness, the capsule mid–surface deformation increases with Cav, since the capsule is

more elongated by the external flow.

The steady–state capsule mid–surface deformation is shown in Figure 5.14 as a function

of Cas for the three constitutive laws. We recover that for a given constitutive law, the

wall thickness has no significant influence on the deformation. This result confirms that

the main deformation mode of a spherical capsule is governed by the elastic stretching of

the mid–surface. Figure 5.14 shows that a little difference between the deformation curve

obtained for the Skalak law and generalized Hooke’s wall, since both constitutive laws

are strain–hardening under uniaxial stretching. The fact that the neo–Hookean law is
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Figure 5.12: Spherical capsule in shear flow: influence of wall thickness on the profile of
the capsule mid–surface within the shear plane for Cav = 0.01. (a) Neo-Hookean law, (b)
Skalak law.
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Figure 5.13: Spherical capsule in shear flow: steady–state deformation D∞
12 as a function

of Cav. (a) Neo-Hookean law, (b) Skalak law.

strain–softening bears two consequences: (i) for the same Cas, the deformation is larger

than the one with a Skalak or generalized Hooke’s wall; (ii) the capsule does not reach a

steady state at large Cas, contrary to the two other cases.

Similarly to the generalized Hooke’s law, wrinkles appear in the equatorial region of

a capsule with a neo–Hookean or Skalak wall at low Cas. As buckling occurs at low Cas,

the capsule is under small deformation, which explains why the constitutive law hardly

influence the capsule mid–surface deformation in this case. The capsule behavior is then

in the linear part of curve shown in Figure 5.14. We thus do not expect the constitutive

law to have a significant influence on the wrinkle wavelength and on its dependence on

the bending rigidity.
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Figure 5.14: Spherical capsule in shear flow: steady–state deformation D∞

12 as a function
of Cas for various constitutive laws.

5.6.2 Capsule subjected to a planar hyperbolic flow

We are now interested on the influence of the bending resistance on the dynamics of

an initially spherical capsule subjected to a planar hyperbolic flow. We investigate the

influence of the non–dimensional governing parameters on the deformation and study the

influence of the bending resistance on the formation of the wrinkles, which appears at low

Cas.

Effect of wall bending resistance on capsule deformation

We first consider an initially spherical capsule with constant bulk shear modulus G at

CaV = 0.005 and vary the wall thickness. Figure 5.15 shows that the capsule with a

generalized Hooke’s wall is elongated in the flow direction and compressed in the per-

pendicular direction at steady state. More importantly, it qualitatively indicates that the

thicker the wall, the less deformed the capsule is at steady state. The capsule deformation

thus decreases with the bending resistance. The evolution of the steady–state Taylor pa-

rameter D∞
12 as a function of Cav and α is shown in Figures 5.16 for the three constitutive

laws.

For a given wall thickness, the capsule elongates under the influence of the external

flow, so that D∞
12 increases with the bulk capillary number Cav. The Figures 5.16 also

prove what was observed qualitatively in Figure 5.15 with a generalized Hooke’s wall, that

increasing the wall thickness decreases the global capsule deformation.

If we now plot the Taylor parameter as a function of the surface capillary number Cas
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Figure 5.15: Spherical capsule in planar hyperbolic flow: influence of wall thickness on
the profile of the capsule mid–surface (with a generalized Hooke’s wall) within the shear
plane for Cav = 0.05.

(Figure 5.17), we observe again that all the results fall onto the curve found for a capsule

without bending resistance. We recover that the main deformation mode of a spherical

capsule is thus governed by the elastic stretching of the mid–surface.

Effect of wall bending resistance on buckling

If stretching effects control the global capsule shape and deformation, bending effects may

still play a role locally, whenever buckling occurs, as we have seen when a spherical capsule

is subjected in shear flow. Results obtained on capsules without bending resistance in

planar hyperbolic flow have shown that wrinkling occurs for Cas smaller than the critical

value CasL = 0.14 − 0.15. The latter is independent of the constitutive law, as the

capsule deformation is then still in the small-deformation regime. The following results

are obtained with a generalized Hooke’s wall.

In order to investigate how the bending resistance influences the formation of wrinkles,

let us consider a capsule such that Cas = 0.1, which is below CasL. The corresponding

capsule thickness is varied between α = 0.003 and 0.02, while Cas is kept constant, so

that Cav is varied between 3× 10−4 and 2× 10−2.

When the capsule wall is modeled as a thin shell, buckling occurs in the central region

of the capsule due to compressive tensions (Figures 5.18b-c). Wrinkles appear at the same

location as those observed when the capsule is devoid of bending resistance (Figure 5.18a).

As it was noted previously, the membrane model can thus be used to predict the location

of the formation of wrinkles. But a thin shell model is needed to obtain information on

the wrinkle wavelength, as it depends on the bending resistance. When the wall thickness

increases, the bending resistance increases and fewer wrinkles are formed (Figures 5.18b-

c). For α ≥ 0.02, wrinkles no longer form. Like in shear flow, it is thus possible to prevent
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Figure 5.16: Spherical capsule in planar hyperbolic flow: steady–state deformation D∞

12

as a function of Cav. (a) Generalized Hooke’s law, (b) Neo-Hookean law and (c) Skalak
law.
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buckling by increasing the wall thickness (Figure 5.18d).
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Figure 5.18: Shape evolution of a capsule with a generalized Hooke’s wall at steady state
for an initially spherical capsule subjected to a planar hyperbolic flow at Cas = 0.1 with
(a) α = 0; (b) 0.005; (c) 0.007; (d) 0.01. The grey levels represent the repartition of the
normal load. The white spots are a lighting artefact.

We adopt the same method as in the shear flow, except that the wrinkle wavelength is

directly found in the yz-plane. Before analyzing any further the wrinkle characteristics,

we verify again that the wavelength is independent of the mesh used. Figure 5.19 shows

the mean wrinkle wavelength λe/ℓ for a capsule with α = 0.01 and Cas = 0.1 as a function

of the number of elements. The wavelength reaches the constant value λe/ℓ = 0.25 for

meshes with at least 8000 elements. Thus, we choose to run all the simulations with 20480

elements.

The influence of the bending resistance on the wrinkle wavelength and amplitude is

studied by increasing the relative wall thickness (Figure 5.20). Figure 5.20a shows that

the wavelength monotonously increases with α, until wrinkles no longer form (α > 0.02

for Cas = 0.1). Figure 5.20b indicates that the wrinkle amplitude A/ℓ is maximum for

small values of α and then decreases until being nil for α > 0.02.

To investigate whether the surface capillary number affects the wrinkle wavelength, we

have considered the case of a capsule with a thickness α = 0.005 and 0.007 at Cas = 0.07.

The two points, added in Figure 5.20, are superimposed on the ones found for Cas = 0.1.

Like in shear flow, the wrinkle wavelength is thus not a function of Cas and only depends

on the bending number. As shown in Figure 5.20a, the wrinkle wavelength is a function of

the square-root of the thickness ratio α. A correlation λe/ℓ = 2.6
√

α = 3.4 K
1/4
B is found

with correlation coefficient R2 = 0.97. We recover the same constitutive law than the

one found in shear flow and it is similar to the one predicted by Cerda & Mahadevan

(2003) for a thin homogeneous membrane is stretched between two clamps. The same

inverse analysis as the one that we have explained in simple shear flow, can be used to

characterize the mechanical properties of capsules.
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Figure 5.19: Capsule with a generalized Hooke’s wall in a planar hyperbolic flow: influence
of the number of elements NE on the mean wrinkle wavelength for Cas = 0.1 and α = 0.01.
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Chapter 6

Off–plane motion of a prolate capsule

As we have seen in the introduction, the dynamics of a non–spherical capsule in shear

flow is more complex than the one of an initially spherical capsule. Furthermore, the

dynamics of an ellipsoidal capsule, which is observed when its revolution axis, seems not

to correspond to a stable equilibrium state. In order to answer this question, we first

determine the stable equilibrium configurations of a prolate capsule with a wall devoid of

bending resistance. This study was published in the "Journal of Fluid Mechanics in 2013

with the title "Off–plane motion of a prolate capsule" (Dupont et al., 2013). This study

was carried out with A.-V. Salsac and D. Barthès-Biesel.

6.1 Introduction

Capsules are small liquid droplets enclosed by a thin deformable elastic membrane. They

are used to protect and transport the particle internal content. Many occurrences may

be found in nature (cells, eggs, seeds), but capsules have also numerous applications in

bioengineering, pharmaceutics and cosmetics.

Nowadays artificial capsules can be produced in large quantities by first creating

an emulsion and then adding a cross–linking agent to form a membrane around the

droplets (Chang et al., 1966; Lévy et al., 1991, 1994, 1995; Edwards-Lévy et al., 1993,

1994; Andry et al., 1996). This results in the fabrication of capsules that are approx-

imately spherical in shape. However, non–spherical capsules have a higher surface–to–

volume ratio than spherical ones (for the same internal volume) and could therefore be

interesting to use in order to enhance mass transfer between the internal and external

media (Schneeweiss & Rehage, 2005). Nature has taken this course with red blood cells,

which are small biconcave disks. Microfluidic systems have been developed recently to

produce non–spherical artificial capsules. In particular Liu et al. (2009) and Xiang et al.

(2008) have fabricated oblate and prolate microcapsules with arbitrary aspect ratio. More

recently, Koleva & Rehage (2012) have fabricated slightly oblate polysiloxane capsules

with an aspect ratio of 0.97–0.99.

When an initially spherical capsule is suspended in a simple shear flow, it elongates

in the straining direction, while the vorticity of the flow induces a tank–treading rota-

tion of the membrane around a steady deformed shape (Barthès-Biesel & Rallison, 1981;
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Ramanujan & Pozrikidis, 1998; Lac et al., 2004; Li & Sarkar, 2008). In the case of a

slightly non–spherical capsule, Chang & Olbricht (1993b) and Walter et al. (2001) have

observed experimentally a more complex behavior (the capsules used by Walter et al.

have an aspect ratio of approximately 0.97). The capsule appears to have a tank–treading

motion in the shear plane but undergoes small oscillations about the straining direction.

This regime was also observed by Abkarian et al. (2007) for red blood cells and is now

called swinging. As the shear rate increases, the swinging regime evolves towards a tank–

treading regime where the cell orientation is steady. At low shear rates, red blood cells

have a solid–like tumbling motion, where they rotate as a solid body about the vortic-

ity axis (Abkarian & Viallat, 2008). Furthermore, Dupire et al. (2012) observed that the

orbit of the red blood cell is unstable near the transition between the tumbling and the

swinging regimes. Such an intermittent regime was also observed by Koleva & Rehage

(2012).

Motivated by the experimental observations on red blood cells, numerical simulations

have been carried out to understand the behavior of non–spherical capsules in shear flow

(Ramanujan & Pozrikidis, 1998; Sui et al., 2008; Walter et al., 2011). These studies have

considered the motion of an oblate capsule in a simple shear flow, in view of their relevance

to red blood cells. Only Walter et al. (2011) have additionally studied the behaviour of

a prolate capsule. In all of these numerical studies, the revolution axis of the capsule is

initially positioned in the shear plane. Since the fluid inertia is either neglected or very

small, Stokes flow conditions prevail and by symmetry the capsule axis must remain in

the shear plane where it reaches an equilibrium periodic motion. These numerical models

show that at low shear rate, the capsule rotates (‘tumbles’) about the vorticity axis as

a quasi–solid body. As the shear rate increases, the capsule elongates in the maximum

strain rate direction and the membrane rotates. However, since the initial geometry is not

isotropic, the capsule elongation and orientation oscillate about mean values as observed

experimentally in the swinging regime. The behaviour of prolate and oblate capsules is

qualitatively the same, but the transition between tumbling and swinging occurs at lower

shear rates for the oblate capsules (Walter et al., 2011).

For spheroidal capsules, there is another obvious equilibrium configuration, which oc-

curs when the capsule revolution axis is perpendicular to the shear plane. From symmetry

considerations, it is clear that in Stokes flow, the capsule axis must then remain parallel to

the vorticity axis. The sections of the capsule parallel to the shear plane lose their initial

circular shape and are elongated in the strain direction, while the membrane tank–treads

about the steady deformed shape. We will call this motion mode rolling, with reference

to Abkarian et al. (2001) and Dupire et al. (2012). Of course in experiments, the capsule

revolution axis is rarely aligned with either the shear flow or the vorticity axis. This raises
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the question of the mechanical stability of the motion of a capsule initially positioned with

its axis in the shear plane or perpendicular to it.

The objective of this paper is thus to study the motion of a capsule in a simple shear

flow when its revolution axis is initially positioned off the shear plane. We will consider

prolate capsules and thus complement the work of Walter et al. (2011). The advantage of

working with this geometry is that the tumbling–to–swinging transition occurs at higher

shear rates for prolate than for oblate capsules, which facilitates the computations. In

particular we will demonstrate that the capsule typically deviates from the tumbling and

swinging motions, when the revolution axis is initially placed outside the shear plane.

The motion of a capsule in a flow is a classical fluid–structure interaction problem.

We use the numerical method developed by Walter et al. (2010) to treat this problem.

This method, based on the coupling of a membrane finite element method for the capsule

deformation with a boundary integral method for the internal and external flows, has

been shown to be very precise and to remain numerically stable. The problem and the

numerical method are briefly outlined in section 6.2. The behavior of a prolate capsule

initially positioned off the shear plane is presented in section 6.3 as a function of the

shear rate. The effect of membrane law and aspect ratio on the capsule motion is shown

in section 6.4. The results are then discussed in section 6.5.

6.2 Problem statement and numerical method

6.2.1 Problem statement

We consider an initially spheroidal capsule and denote by 2a the length of the revolution

axis and by 2b the length of the two orthogonal axes. The capsule is prolate with aspect

ratio a/b. We define a length scale ℓ = (ab2)1/3 as the radius of the sphere with the same

volume as the capsule. We shall consider two capsule shapes corresponding to a/b = 2

(a/ℓ = 1.587, b/ℓ = 0.794) and a/b = 3 (a/ℓ = 2.08, b/ℓ = 0.693) respectively. The

reference frame based on the undeformed capsule principal axes is denoted F ′ (O, e′

x, e′

y,

e′

z), where O is the centre of mass of the capsule. Assuming that the revolution axis is

along e′
z, the capsule surface is given by

(

x′

s

b

)2

+

(

y′

s

b

)2

+

(

z′

s

a

)2

= 1, (6.1)

where (x′
s, y′

s, z′
s) is the position of a membrane material point.

The capsule is filled with a Newtonian incompressible fluid with viscosity µ. It is freely

suspended in an unbounded Newtonian incompressible fluid with the same viscosity µ.
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The external fluid is subjected to a simple shear flow with shear rate γ̇ and undisturbed

velocity

v∞ = γ̇ y ex (6.2)

in the laboratory reference frame F (O, ex, ey, ez). The Reynolds number of the flow is

assumed to be very small. Thus, the internal and external flows are governed by the

Stokes equations. The symmetry of the problem and of the governing equations implies

that, when the revolution axis of a capsule is initially in the shear plane or perpendicular

to it, it remains as such.

At time γ̇t = 0, the position of the capsule in space is defined by the angles between

the basis vectors of frames F ′ and F . As shown in Figure 6.1, we chose (ex, e′

x) = 0 and

(ez, e′

z) = (ey, e′

y) = ζ0. This means that the capsule revolution axis initially makes an

angle ζ0 with the vorticity axis and an angle π/2− ζ0 with the shear plane.

The capsule membrane is modeled as an isotropic hyperelastic surface with shear mod-

ulus Gs and area dilatation modulus Ks. Two types of membrane constitutive laws can be

considered, where the material is either strain–softening or hardening (Barthès-Biesel et al.,

2002). A strain–softening membrane can be described by the neo–Hookean law (NH). The

principal elastic tensions T1 and T2 are then given in terms of the in–plane principal stretch

ratios λs1 and λs2 by

T1 =
Gs

λs1λs2

[

λ2
s1 −

1
(λs1λs2)2

]

(likewise for T2). (6.3)

The surface shear and area dilatation moduli are related by Ks/Gs = 3. Conversely, a

strain–hardening membrane can be described by the Skalak law (SK), initially proposed

by Skalak et al. (1973) to model the red blood cell membrane

T1 =
Gs

λs1λs2

[

λ2
s1(λ

2
s1 − 1) + C(λs1λs2)2

(

(λs1λs2)2 − 1
)]

(likewise for T2). (6.4)

The surface shear and area dilatation moduli are then related by Ks = Gs(1+2C), where

C is a constant such that C > −1/2. For C = 1 (Ks/Gs = 3), the two laws NH and SK

lead to the same small deformation behavior. Note that the Skalak membrane material

can undergo surface–area changes while being strain–hardening.

The capsule motion and deformation are thus governed by the membrane constitutive

law, the ratio of the area dilatation and shear moduli Ks/Gs, the particle initial aspect

ratio a/b and initial orientation ζ0, and by the capillary number Cas = µγ̇ℓ/Gs, which

measures the ratio between the viscous and the elastic forces.
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Figure 6.1: Reference configuration of the prolate capsule at γ̇t = 0. The capsule incli-
nation ζ0 is the initial angle between the flow vorticity axis ez and the capsule revolution
axis e′

z. During the capsule deformation, we will follow the motion of two specific points
of the capsule membrane: the point M0

3 is initially on the short axis e′

x (�) and the point
M0

1 on the long axis e′
z (•).

6.2.2 Numerical method

The motion and deformation of the capsule are solved by means of the numerical tech-

nique developed by Walter et al. (2010). This method couples a membrane finite element

method (for the mechanics of the capsule wall) with a boundary integral method (for the

internal and external flows). The method is briefly described in this subsection. More

details on the procedure may be found in Walter et al. (2010) or in the book chapter

(Barthès-Biesel et al., 2010).

At time γ̇t = 0, the capsule is in its reference ellipsoidal shape, when we start the

flow. We then perform a Lagrangian tracking of the position of the membrane material

points over time. At a given time, the position of the material points is known and we

may thus compute the stretch ratios λs1 and λs2 and the elastic tension tensor T from

equation (6.3 or 6.4). The load q exerted by the fluids on the membrane is found by using

the finite element method to solve the membrane equilibrium equation

∇s · T + q = 0, (6.5)

where ∇s represents a surface gradient. The fluid velocity may be written as a boundary

integral on the deformed surface St of the capsule

v(xs) = v∞(xs)−
1

8πµ

∫

St

(

I

‖ r ‖ +
r ⊗ r

‖ r ‖3

)

· q(ys)dS(ys), (6.6)

where v(xs) is the velocity of the membrane point located at xs, r = xs − ys and I is the
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identity tensor. An explicit second–order Runge–Kutta method is then used to integrate

the velocity and obtain the new position of the membrane points at the following time

step.

6.2.3 Discretization, stability and convergence

The surface of the capsule is discretized with triangular curved P2 elements (Figure 6.1).

The mesh is initially generated for a spherical capsule by inscribing an icosahedron (regular

polyhedron with 20 triangular faces) in a sphere. The elements are subdivided sequen-

tially until the desired number of elements is reached (Ramanujan & Pozrikidis, 1998;

Walter et al., 2010). At the last step, nodes are added at the middle of all the element

edges and projected onto the sphere in order to generate the P2 elements. The mesh is

then deformed into an ellipsoid following equation 6.1. In the study, the capsule mesh

has 2562 nodes and 1280 elements.

The numerical method is stable, when the time step satisfies the condition γ̇ △ t <

O(∆x Cas/ℓ), where ∆x/ℓ is the typical non–dimensional mesh size (Walter et al., 2010).

We use γ̇△ t = 5×10−3 for Cas ≥ 0.5 and decrease the time step proportionally for lower

Cas.

A capsule initially placed off the shear plane takes a very long time to reach the

equilibrium state. Computational times of the order of γ̇t = 102 − 103 are therefore

needed to capture the dynamics. With such long computational times, the numerical

error may no longer be negligible. We thus monitor the relative error εV = |V − V0|/V0

on the capsule volume V , where V0 is the capsule initial volume. For off–plane capsules,

the error at γ̇t = 100 is ∼ O(10−2) for Cas ≤ 0.9 and O(10−3) for Cas > 0.9.

6.2.4 Result analysis

Depending on the parameters, the capsule motion and deformation become complex and

difficult to analyze. The global geometry of the capsule is evaluated by means of the

ellipsoid of inertia of the deformed shape. We denote by Li the half–lengths of the

principal axes of the ellipsoid of inertia (L1 > L2 > L3) and vi the corresponding unit

vectors in F (v1 = e′

z at time γ̇t = 0 for a prolate capsule). The membrane rotation is

measured from the motion of two points (Figure 6.1):

• the point M0
3 is the Lagrangian position at time γ̇t of the membrane point that was

initially located on the capsule short axis e′

x.

• the point M0
1 is the Lagrangian position at time γ̇t of the membrane point that was

initially located on the capsule long axis e′
z.
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The capsule global motion is measured from the position of the capsule tip Mt
1, which

corresponds to the Eulerian position in F of the intersection between the v1 axis and the

membrane. At time γ̇t = 0, the points M0
1 and Mt

1 are superimposed. The projections of

M t
1 in the shear xy−plane or in the xz−plane are denoted Mt

1,xy and Mt
1,xz, respectively.

The capsule deformation can be analyzed using the Taylor parameters

Dij =
Li − Lj

Li + Lj
(i, j = 1, 2, 3 and i 6= j). (6.7)

Owing to the capsule initial ellipsoidal shape, the initial values of the Taylor parameters

are D0
23 = 0 and D0

12 = D0
13 = (a− b)/(a + b) = 1/3 for an aspect ratio a/b = 2 or 1/2 for

a/b = 3. The overall deformation can also be measured by the elastic energy E stored in

the capsule wall

E(t) =
∫

S0

ws(λs1, λs2, t)dS, (6.8)

where ws is the strain energy function per unit area of undeformed membrane and S0 is

the initial surface of the capsule.

In most cases, the capsule has a kind of gyroscopic motion, where it rotates and

reorients itself. Correspondingly, the coordinates of any point, the membrane energy, the

capsule deformation, etc. have pseudo–periodic oscillations with amplitude changing over

time. We have used a centered moving average method (Hay & Bull, 2009) to smooth

the data and to visualize the time evolution of the parameters (Figure 6.2). This method

replaces a value xs(t) by its average over a period T centered around the time value

t. Here, we define the period of the motion as the time required for a point initially

at (xs, 0, 0) to return on the ex axis. Unless otherwise mentioned, all results pertain to

quantities that are averaged over one period.

To simplify notation, we call C2SK and C3SK the capsules with a SK membrane of

aspect ratios 2 and 3, respectively, and C2NH the capsules with a NH membrane of aspect

ratio 2.

6.3 Results

We first consider a prolate capsule a/b = 2 enclosed by a SK (C = 1) membrane, and

study in detail the effect of the initial orientation ζ0 and of the flow strength measured by

Cas. The influence of the membrane law and of the aspect ratio will be briefly discussed

in section 6.4.
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Figure 6.2: Time evolution of the elastic energy E/Gsℓ
2 stored in the membrane (solid

line) for a C2SK capsule with ζ0 = 85° and Cas = 0.9. The mobile average (dotted line)
is obtained with a non–dimensional period γ̇T = 21.55.

6.3.1 Motion of a capsule with ζ0 = 90°

Before studying the motion of a capsule initially placed off the shear plane with an arbi-

trary angle, we will first summarize the dynamics of a capsule when its revolution axis is

initially positioned in the shear plane (ζ0 = 90°). Walter et al. (2011) have shown that

the long axis remains in the shear plane. They have also shown that the capsule motion

is a function of the capillary number Cas. At low capillary numbers (Cas < 0.25), the

capsule rotates about the vorticity axis like a quasi–solid particle; its cross–section with

the shear plane exhibits small deformations (Figure 6.3a). This regime is referred to as

tumbling.

For Cas > 0.35, the capsule has a quasi–fluid behaviour. The angle of the capsule

long axis with the streamlines and the capsule deformation oscillate about mean values

(Figure 6.3b), because of the geometrical anisotropy of the initial shape. This is the

so–called swinging regime. As Cas increases, the membrane deformation increases and

the long axis is tilted towards the streamlines. Furthermore, the oscillation amplitudes

of the deformation and orientation also decrease with increasing Cas. Asymptotically,

the capsule tends towards the pure tank–treading regime, where the membrane rotates

around a steady deformed profile.

6.3.2 Motion of a capsule with ζ0 = 0°

There is no available study of the case where the revolution axis of the capsule is initially

perpendicular to the shear plane and thus parallel to the vorticity axis (ζ0 = 0°). In this

situation, the capsule long axis remains parallel to the vorticity for symmetry reasons.

The shear flow exerts a viscous torque on the membrane and thus the capsule cross–

sections parallel to the shear plane that were initially circular become elongated in the
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Figure 6.3: Capsule C2SK shape when ζ0 = 90°: shape evolution over one half period at
steady state for (a) Cas = 0.1 and (b) Cas = 2. The grey scale corresponds to the normal
component of the load q · n on the membrane. The maximum values of the normal load
are (a) q · n/Gs = 0.9 and (b) 25. The value of the non–dimensional time γ̇t is given
below each shape. The points M0

3 (�) and M0
1 (•) were initially on the short and long axis

respectively (Figure 6.1).

strain direction. The membrane then rotates around the steady capsule shape as shown

in Figure 6.4. This capsule motion is the same for all the values of the capillary number

and is called the rolling regime.

In order to further investigate the evolution of the capsule deformation, we have plotted

the Taylor parameters calculated at steady state in Figure 6.5a. For low flow strength the

principal direction v1 is along the vorticity axis. The deformation within the shear plane is

thus measured by D23, which sharply increases from zero (initially circular cross–section)

to a plateau value a little above 0.5 (of the same order as the maximum deformation for

a spherical capsule in simple shear flow). The deformation in planes perpendicular to

the shear plane are measured by D12 and D13. The decrease of D12 with Cas is due to

the pinching of the capsule by the straining effect of the shear flow. For Cas ≥ 1.5, the

capsule reaches a shape that is hardly influenced by the flow strength.

The maximum value Tmax of the principal elastic tensions within the membrane is

shown in Figure 6.5b. We find that the elastic tension level and correlatively the risk

of rupture increase quasi–linearly with Cas. The maximum is along the v1 principal

direction; it is located in the shear plane at the intersection of the capsule edge with

the v3 principal direction. This is where the rupture will most likely occur when the

failure criterion of the membrane material is exceeded. The minimum of the principal

tensions Tmin is found to be about zero for all the values of Cas (data not shown). It is

slightly negative until Cas = 0.4 (Tmin/Gs ∈ [−0.04, 0]), so that the membrane undergoes

moderate compression locally. This explains why wrinkles appear at the capsule apices
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Figure 6.4: Capsule C2SK shape when ζ0 = 0°: shape evolution over one half period at
steady state for (a) Cas = 0.1 and (b) Cas = 0.6. Same legend as in figure 6.3. The
maximum values of the normal load are (a) q · n/Gs = 0.5 and (b) 2.5.
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Figure 6.5: Capsule C2SK. Influence of the capillary number Cas on the rolling regime
at ζ0 = 0°. (a) Capsule deformation estimated by the Taylor parameters Dij, where the
dotted line represents the stability limit; (b) maximum membrane tension Tmax.

along the long axis (i.e. v1) in Figure 6.4 for Cas = 0.1 and not for Cas = 0.6.

Although we have shown results for large values of Cas, we will see in the following

that for Cas > 0.6, the rolling configuration is no longer mechanically stable.

6.3.3 Off–plane capsule at low flow strength (Cas ≤ 0.6)

When the capsule axis is displaced from the shear plane by a small angle of 5° (ζ0 = 85°),

the capsule long axis does not go back to the shear plane. As shown in Figure 6.6a

for Cas = 0.1, the projection Mt
1,xy of the capsule tip in the shear plane moves away

from the fixed trajectory reached for ζ0 = 90°. It spirals around the flow vorticity axis

ez and eventually converges towards it. This is also apparent from Figure 6.6b, which

shows the evolution of the projection M t
1,xz of point Mt

1 in the xz−plane. The stable

equilibrium position is thus the rolling regime. It is the converging position for any
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Figure 6.6: Motion of a C2SK capsule with ζ0 = 85° at Cas = 0.1: (a) Comparison of
the trajectory of point Mt

1,xy in the shear xy−plane with the case ζ0 = 90°. The arrow
indicates the initial position of Mt

1,xy. (b) Evolution of the capsule shape in the xz-plane
at the beginning of each period (solid line: capsule shape at γ̇t = 0). The black point
indicates the position of point Mt

1,xz at γ̇t = 5, 22, 38, 55, 721, 89, 106, 123.

off–plane orientation ζ0 < 90° (not shown). At equilibrium the capsule deformation and

tank–treading motion are identical to those of the same capsule initially positioned at

ζ0 = 0° (Figures 6.4 and 6.5), i.e. with its revolution axis initially along the vorticity

axis.

As shown in Figure 6.7, when the capsule is not constrained in the shear plane by

symmetry, the elastic energy stored in the membrane decreases during the transient mo-

tion until it reaches the value for a rolling capsule. The equilibrium configuration is thus

the one for which the mean deformation (as measured by the energy) is the smallest. We

also note in Figure 6.7 that the initial orientation angle ζ0 influences the time the capsule

needs to reach its equilibrium position. Indeed, the smaller the initial angle ζ0, the smaller

the time. The transient time until equilibrium also increases with the capillary number

(not shown).

In conclusion we find that, for Cas up to 0.6, the mechanically stable situation cor-

responds to the rolling regime, a configuration where the capsule long axis is normal

to the shear plane and the membrane tank–treads around it. Since the deformation is

small at low capillary number, the capsule behaves almost as a solid ellipsoid and takes

the position that dissipates the less energy (Jeffery, 1922). Consequently, the tumbling

motion found when the capsule axis is in the shear plane (ζ0 = 90°) is an unstable equi-

librium state. Over long times, the accumulation of numerical errors is enough to slowly

destabilize it. Considering the fact that in a suspension, the initial capsule orientation is

usually random, we can expect that most of the capsules align their long axis with the
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Figure 6.7: Capsule C2SK: time evolution of the elastic energy stored in the membrane
E/Gsℓ

2, for various initial inclinations of the capsule with the shear plane (Cas = 0.5).
The case ζ0 = 90° represents the mechanically unstable tumbling motion.

flow vorticity and are eventually all in the rolling regime.

6.3.4 Transition at moderate flow strength (0.6 < Cas < 1)

For Cas ≥ 0.7, the capsule no longer tends towards the rolling motion observed for lower

values of Cas. Its motion is now a function of Cas.

For example, for Cas = 0.9 and different initial orientations ζ0 ∈ ]0°, 90°[, the time

evolution of the mean elastic membrane energy E/Gsℓ
2 shows that it converges towards a

common equilibrium value (Figure 6.8). For Cas = 0.9, this equilibrium state corresponds

more or less to the motion that the capsule takes almost immediately (i.e. after a short

transient) for an initial angle ζ0 = 15− 30°.

We choose, therefore, to examine in detail the motion of a capsule with ζ0 = 15° for

Cas = 0.9. The capsule rotates as a whole around the vorticity axis, while its tip Mt
1 has

a wobbling motion as shown in Figure 6.9. Indeed, the projection Mt
1,xy of Mt

1 in the shear

plane follows a roughly elliptical trajectory (Figure 6.9a), while the height of Mt
1 above

the shear plane oscillates (Figure 6.9b). This is of course different from the swinging

motion obtained for ζ0 = 90°, where the tip of the capsule oscillates in the shear plane

as shown in Figure 6.9a. We quantify this motion by means of ζmax, which corresponds

to the maximum angle between the capsule longest principal axis v1 and the vorticity

axis (in Figure 6.9b, one can see the projection of the angle ζmax in the xz−plane). The

value of ζmax depends on Cas as shown in Figure 6.10a. We retrieve the fact that for
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Figure 6.8: Capsule C2SK at Cas = 0.9: effect of the initial orientation on the time
evolution of the elastic energy stored in the membrane E/Gsℓ
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Figure 6.9: Motion of a C2SK capsule with ζ0 = 15° at Cas = 0.9 up to the end of
the first pseudo–period (0 < γ̇t < 26): (a) trajectory of point Mt

1,xy in the shear plane
(comparison with ζ0 = 90°); (b) trajectory of point Mt

1,xz in the xz−plane for ζ0 = 15°.
The arrows indicate the initial position at γ̇t = 0. The horizontal line at z = 0 represents
the shear plane.
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Figure 6.10: C2SK capsule. (a) Evolution of the maximum inclination ζmax of the capsule
longest axis with the vorticity axis at equilibrium as a function of Cas: Ro: rolling, Wo:
wobbling, Sw: oscillating–swinging tending to pure swinging. (b) Evolution of the mean
elastic energy E∞ stored in the membrane at equilibrium as a function of Cas for initially
off–plane capsules (diamond). Comparison with the cases ζ0 = 0° (square) and 90°
(circle).

Cas ≤ 0.6, ζmax = 0°, which corresponds to the rolling motion. As the capillary number

is increased above 0.6, the capsule starts to precess around the vorticity axis with a

maximum amplitude ζmax, which increases sharply with Cas.

The evolution of the mean elastic energy stored in the membrane at equilibrium E∞

(Figure 6.10b) also indicates clearly that the capsule bifurcates from the rolling regime

(ζ0 = 0° curve) for Cas ≥ 0.7. In the wobbling regime, the capsule deformation is still

moderate but the energy of deformation is a little larger than the one that would be found

in the rolling regime for the same Cas.

6.3.5 Off–plane motion at high flow strength (Cas ≥ 1)

For a capillary number larger than 1, we find another type of motion. For example, for

Cas = 1.5 and different initial orientations, the mean elastic membrane energy E/Gsℓ
2

converges in time towards a common value as shown in Figure 6.11. This equilibrium state

is reached after a short transient for an initial angle ζ0 = 60°. The details of the motion of

a capsule with ζ0 = 60° at Cas = 1.5 are then shown in Figure 6.12. The capsule assumes

what we call an oscillating–swinging motion, where the tip of the capsule oscillates both

about the shear plane (Figure 6.12b) and within the shear plane about a mean inclination

with respect to the flow direction (Figure 6.12a). The rotational motion is now taken

over by the membrane as is apparent from the trajectory of point M0
1 in the shear plane

(Figure 6.12a). This behavior corresponds to values of ζmax ≥ 90°, as shown in Figure

6.10a.

As Cas increases, the amplitude of the oscillations about the shear plane decreases. For
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Figure 6.11: C2SK capsule at Cas = 1.5: effect of the initial orientation on the time
evolution of the elastic energy stored in the membrane E/Gsℓ

2.

large values of the capillary number Cas ≥ 1.8, the capsule positions its long axis in the

shear plane (ζmax = 90°) for any initial orientation ζ0: it undergoes the swinging regime

described by Walter et al. (2011) and summarized in section 6.3.1. The convergence of

the oscillating–swinging regime towards a pure swinging regime is also shown in Figure

6.10b: as Cas increases, the equilibrium elastic energy tends towards the values obtained

in the swinging regime. The evolution of the capsule profile at equilibrium is therefore

similar to the one shown in Figure 6.3b for ζ0 = 90°. The membrane tank–treads around

the time–oscillating profile. But, even these oscillations decrease as Cas is increased: the

capsule tends asymptotically towards a pure tank–treading motion at very large values of

the capillary number.

6.3.6 Global effect of Cas

In conclusion, the motion and deformation of a prolate ellipsoidal capsule in shear flow

depend in a complex way on the flow strength. There are two obvious equilibrium states

for which the capsule keeps symmetry properties with respect to the shear plane and

which correspond respectively to ζ0 = 0° or 90°. The mean equilibrium energy stored in

the membrane E∞ shown in Figure 6.10b indicates that the energy is larger when the

capsule axis is in the shear plane (ζ0 = 90°) than when it is perpendicular to it (ζ0 = 0°).

However, the energy criterion is not enough to govern the equilibrium state of the capsule

even in Stokes flow. Indeed the capsule motion is the result of non–linear fluid–structure

interactions. This may explain why there is a bifurcation from the rolling state towards
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Figure 6.12: Motion of a C2SK capsule with ζ0 = 60° at Cas = 1.5 up to the end of
the first pseudo–period (0 < γ̇t < 29): (a) trajectories of point Mt

1,xy (comparison with
ζ0 = 90°) and of point M0

1,xy, the projection of point M0
1 in the shear plane; (b) trajectory

of point M0
1,xz in the xz−plane. The arrows indicate the initial position at γ̇t = 0. The

horizontal line at z = 0 represents the shear plane.

the swinging state. During this transition, the capsule has first a quasi solid wobbling

motion followed by a quasi fluid oscillating–swinging motion.

The question of the uniqueness of the equilibrium state then arises. In other words,

is there an hysteresis effect? In order to give an answer to this question, we did the

following experiment: starting from the oscillating–swinging equilibrium state found for

Cas = 1.5, we have suddenly reduced the capillary number to Cas = 0.9. The resulting

trajectory of the projection Mt
1,xz of the capsule tip in the xz−plane is shown in Figure

6.13. We note that the amplitude of the oscillations of the capsule about the shear

plane (x−axis) increases with time until the capsule switches to the wobbling motion. It

converges towards the same configuration as obtained for a capsule initially at Cas = 0.9

as shown in Figure 6.9b. If then we suddenly decrease Cas from 0.9 to 0.1, the capsule

goes to the rolling regime described in section 6.3.3 (not shown). We thus conclude that

the equilibrium states we find are unique.

6.4 Effect of membrane law and capsule aspect ratio

In order to assess the robustness of the results obtained with a SK law, we now consider

a capsule with aspect ratio a/b = 2 and a strain–softening NH membrane. We find again

that for low flow strength (Cas ≤ 0.5), the stable mode of motion of the C2NH capsule is

the rolling motion. In this regime, a capsule with a NH membrane is easier to deform than

one with a SK membrane (Figure 6.14). Indeed for the same value of Cas, the capsule
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Figure 6.13: Time evolution of a capsule C2SK initially undergoing stable oscillating–
swinging motion at Cas = 1.5, when the capillary number is suddenly changed to Cas =
0.9. The trajectory of the capsule tip Mt

1,xz in the xz−plane is followed in time.

deformation is larger for a NH membrane than for a SK one.

As shown in Figure 6.15a, for Cas = 0.6, the C2NH capsule has a wobbling motion

followed by an oscillating–swinging motion for Cas ≥ 0.7. However, for Cas ≥ 0.9, the

capsule does not seem to reach a steady trajectory. This is in agreement with the fact

that there is no stable swinging regime in the shear plane for large values Cas ≥ 1.

Indeed, there is a critical flow strength for which the strain–softening elastic tension

cannot balance the large viscous tension applied by the fluid (Barthès-Biesel, 2011).

The case of a capsule with a SK membrane and aspect ratio a/b = 3 is now considered.

Note that since we consider equal volume capsules, the capsule dimensions are now a/ℓ =

2.08 and b/ℓ = 0.693. The capsule cross–section is thus smaller than it is for a/b = 2. The

rolling motion is again found to be the stable regime for Cas ≤ 0.8. It is then followed

by a wobbling motion for 0.9 ≤ Cas ≤ 1.7 and by an oscillating–swinging motion with

decreasing oscillation about the shear plane as Cas increases (Figure 6.15b).

In conclusion we find the same qualitative motion (rolling followed by wobbling and

eventually swinging with oscillations about the shear plane), irrespective of the capsule

membrane law or aspect ratio. The main effect of these parameters is to change a little

the values of Cas at transition. In particular, it seems that the main factor that triggers

the transition from rolling to wobbling is the deformation of the membrane. Indeed,

from Figure 6.14, we note that the last result of stable rolling motion before transition is
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obtained for roughly the same values of the three deformation parameters

D23 = 0.45 ∼ 0.47, |D12 −D0
12| = 0.23, D13 −D0

13 = 0.16 ∼ 0.22.

This means that it corresponds to the same mean elastic energy in the membrane E/Gsℓ
2 =

1 ∼ 1.3, which is rather small compared to the high levels of elastic energy reached in the

swinging regime.
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6.5 Discussion and conclusion

The study of the mechanical stability of the motion of a prolate ellipsoidal capsule under

shear flow has provided new interesting results. We have found that for a prolate capsule

in Stokes flow, the two obvious symmetric configurations where the capsule axis is either

parallel or perpendicular to the shear plane do not always correspond to stable equilibrium

states. Since in the Stokes regime, the dynamic time dependent term is removed from the

Navier–Stokes equations, the only way to test the stability of an equilibrium solution is

to perturb it. We have adopted this method and shown that for low flow strength, the

capsule assumes a rolling motion with its axis parallel to the flow vorticity, whereas for

high flow strength, the swinging motion in the shear plane is stable. We have not tried

to determine with a high precision, the values of Cas for which transition occurs. The

critical value is obtained within an interval of 0.1.

For example, in the case of a capsule with a/b = 2 and a SK (C = 1) membrane, we find

that for moderate flow strength (up to Cas = 0.6), the stable equilibrium corresponds

to the rolling regime: the prolate capsule orients its long axis parallel to the vorticity

direction. For high flow strength (Cas ≥ 1.8), the capsule, however, places its long axis in

the shear plane and follows a swinging regime with oscillations decreasing with Cas. In

the intermediate range (0.7 ≤ Cas ≤ 0.9), the capsule first exhibits a complex wobbling

motion and precesses around the vorticity axis. Its long axis then makes a mean angle

with the vorticity axis which increases with Cas. For Cas > 1, the capsule oscillates

about the shear plane and assumes a swinging motion. The amplitude of the oscillations

decreases with Cas.

Jeffery (1922) found that the final orientation of a rigid ellipsoidal particle suspended

in an external flow was such that the viscous energy dissipation is minimum. Corre-

spondingly, a prolate ellipsoid would have its long axis parallel to the vorticity. For small

capillary numbers, the capsule behaves almost like a solid ellipsoid. It is thus not surpris-

ing that the stable equilibrium state, i.e. the rolling regime, corresponds to the Jeffery’s

regime. For Cas > 0.6, the capsule no longer converges towards the configuration that

minimizes the viscous dissipation as can be surmised from Figures 6.8 and 6.11. The mem-

brane deformation plays an important role and the fluid–structure interactions dictate the

equilibrium configuration. We have corroborated these results by studying other prolate

capsules with either a different membrane law or a different aspect ratio. We find that

all these capsules have a stable rolling regime at low shear rate, from which they depart

when a given level of deformation (or of elastic energy in the membrane) is reached. This

allows us to surmise the role of the viscosity ratio λ between the internal and external

fluids. Using a viscosity ratio λ = 1 simplifies significantly the computations which are

then shorter. As we have studied the dynamic response of a capsule this is an appreciable
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advantage. For spherical capsules, it has been shown that λ < 1 leads to a moderate

increase of the capsule deformation of order 20% for the same value of Cas (Foessel et al.,

2011). Thus we can expect a low internal viscosity capsule to quit the rolling regime for

values of Cas lower than those found for λ = 1. Conversely as λ increases above unity,

the internal viscosity effect is to decrease the capsule deformability. We can thus expect

that the stability limit of the rolling regime will increase with the internal viscosity.

Experimentally, for a given capsule population, the capsule shape (size ratio a/b and

characteristic length ℓ), internal viscosity µ and membrane elasticity moduli (Gs, Ks) are

fixed. Thus the only way to increase Cas is through the shear rate γ̇ and the external

fluid viscosity (but then the viscosity ratio also changes while it is assumed to be unity

in this study). Typical artificial capsules have a shear elastic modulus of the order of

Gs = 0.1 to 1 N/m (Chang & Olbricht, 1993b; Chu et al., 2011; Koleva & Rehage, 2012;

Zhang & Salsac, 2012), while their size varies from ℓ = 30 µm to 1 mm. With these

values, we have to apply a viscous stress µγ̇ of the order of 100 Pa to obtain a capillary

number of Cas = 0.1. At the same time, we have to keep the flow Reynolds number

Re = ρa2γ̇/µ small (where ρ is the fluid density). Experimental observations are best

made at low values of the shear rate, typically γ̇ < 10 s−1 so that the experimental time

t is not too short (see for example Abkarian et al. (2007)). Thus high values of the shear

stress are difficult to achieve unless the external fluid viscosity is very large. We conclude

that it is challenging to reach large values of Cas experimentally.

Furthermore, artificial capsules tend to break up for deformation levels of order 2–

10% (Chang & Olbricht, 1993b; Koleva & Rehage, 2012) with a polymer membrane and

of order 20–30% for a polymerized albumin membrane (Carin et al., 2003). It follows

that although interesting from the theoretical point of view, the high Cas behavior is not

very likely to be observed. Thus, the most probable configuration that can be observed

experimentally is the rolling regime.
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Chapter 7

Equilibrium states of an oblate

capsule in shear flow

In order to study the influence of the capsule aspect ratio on the stable equilibrium con-

figurations, we now determine the stable equilibrium configuration of an oblate capsule.

Firstly, we consider an oblate capsule with an aspect ratio of 0.5 and a strain-hardening

membrane. We investigate the influence of the initial orientation, the capillary number

Cas, and viscosity ratio λ between the internal and external fluids and evaluate the charac-

teristic times that an oblate capsule needs to reach equilibrium. This study was submitted

to the ’Journal of Fluid Mechanics’ with the title ’Stable equilibrium configurations of

an oblate capsule in simple shear flow’. It was carried out F. Delahaye, D. Barthès-Biesel

and A.-V. Salsac. The chapter is completed with additional results obtained on ellipsoidal

capsules with various aspect ratio a/b. The results of simulations conducted on capsules

having their revolution axis within the shear plane enable to provide a complete picture

of the stable configuration states for a large range of capillary number Cas and aspect

ratio a/b.

7.1 Introduction

Capsules, which consist of a thin deformable membrane around a liquid droplet, play

the joint role of transporting and protecting an inner fluid content. The principle of mi-

croencapsulation is ubiquitous with many applications in industry. Besides its classical

use in ink–jet printing, photography, cosmetic cream manufacturing, etc., it is at the

source of innovative applications, many of them appearing in the field of biotechnologies

(Ma & Su, 2013). For instance, contrast–enhanced ultrasound has become one of the

most widespread imaging techniques thanks to the use of coated air microbubbles or of

microcapsules filled with perfluorinated gases for echogenicity (Furlow, 2009). In phar-

maceutics, drug and cell encapsulation is rapidly developing (Bhujbal et al., 2014) and

has led to new treatment techniques, such as targeted drug therapy. Similarly, encapsu-

lation is used for the development of bioartificial organs (e.g. encapsulation of islets of

Langerhans for diabetic patients (Clayton et al., 1993) or of haemoglobin to create artifi-

cial blood (Chang, 2003)). Many instances of encapsulation may also be found in nature
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(e.g. seeds, eggs, cells). Red blood cells (RBC) are an example of natural capsules: their

two–layer membrane composed of a lipid bilayer (outer layer) and a cytoskeleton protects

a solution of hemoglobin (Mohandas & Gallagher, 2008).

The motion of spheroidal capsules or of biconcave red blood cells in simple shear flow

with shear rate γ̇ is quite complicated. It depends on the axis ratio a/b (a is half the

revolution axis length), on the viscosity ratio λ between the internal and external liquids

and on the relative flow strength, measured by the capillary number Cas = µγ̇ℓ/Gs, where

µ is the suspending fluid viscosity, Gs the surface shear elastic modulus of the capsule

membrane and ℓ the length scale defined as the radius of the sphere with the same volume

as the capsule. Different behaviors have been identified. When the capsule revolution axis

is in the shear plane, the particle can rotate like a quasi–solid particle (tumbling motion),

or it can take a quasi–steady deformed shape where the long axis oscillates around a mean

orientation in the shear plane, while the membrane rotates about the deformed shape

(swinging or tank–treading motion, depending on the oscillation amplitude). Another

equilibrium state is found when the particle revolution axis is perpendicular to the shear

plane: the capsule takes a rolling motion and rotates like a (deformed) wheel under the

flow vorticity. The transition from in–plane to rolling motion has received many names

in the literature: wobbling, precessing, kayaking, oscillating swinging.

Experiments, carried out on single red blood cell, have shown that the cell deforma-

bility and dynamics are very different from those observed for a rigid particle or even

a spherical capsule. At low Cas, a RBC has a tumbling motion which evolves into

a swinging motion, as Cas increases (Abkarian et al., 2007; Abkarian & Viallat, 2008;

Fischer & Korzeniewski, 2013). However, this well established picture has recently been

questioned by Dupire et al. (2012), who have observed that the tumbling motion became

unstable so that the red blood cells took a rolling motion, before switching to tank–

treading. Note that in most experiments the presence of a solid wall and/or a slight local

non–linearity due to the parabolic nature of the flow field, may influence the resulting

motion.

Motivated by these experimental observations, a number of numerical studies have

investigated the dynamics of a spheroidal capsule placed in a simple shear flow. The

first models considered a capsule with its revolution axis placed in the shear plane, where

it remains under Stokes flow conditions (Ramanujan & Pozrikidis, 1998; Sui et al., 2008;

Bagchi & Kalluri, 2009; Walter et al., 2011). It is found that the capsule has a tumbling

motion at low Cas and a swinging motion at high Cas. At the tumbling–to–swinging

transition, the capsule assumes a quasi–circular shape in the shear plane. The value of

Cas at the transition depends on the capsule aspect ratio: transition occurs at higher Cas

for prolate capsules than for oblate capsules. For a given shape, increasing the internal
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viscosity also shifts the transition to higher values of Cas.

The off–plane motion of a prolate capsule has been recently studied in simple shear

flow in Stokes flow conditions by Dupont et al. (2013) or under low flow inertia (Reynolds

number Re = 0.2) by Cordasco & Bagchi (2013) and Wang et al. (2013). Dupont et al.

(2013) have considered flow strengths 0.1 ≤ Cas ≤ 2. They have found that the low

Cas tumbling motion in the shear plane is mechanically unstable: starting from any

initial orientation, the capsule eventually places its revolution axis along the vorticity

axis and takes a stable rolling motion. As Cas is increased, a prolate capsule tilts away

from the vorticity axis and precesses around it. At still higher values of Cas, a stable

swinging regime is observed, where the capsule longest axis tends towards the shear plane.

Dupont et al. (2013) have shown that these stable equilibrium states did not depend on

the initial orientation of the capsule, a result which is confirmed by Wang et al. (2013)

for Cas ≥ 0.03. The fact that Cordasco & Bagchi (2013) find that the motion depends

on the initial capsule orientation may be due to too short computation times.

The question that arises is whether the results found for prolate capsules apply to

oblate spheroidal capsules. Cordasco & Bagchi (2013) studied oblate ellipsoidal capsules

for 0.05 ≤ Cas ≤ 0.6, different axis ratios and no viscosity contrast (λ = 1). They

conclude that an oblate spheroidal capsule always tends towards the shear plane where it

takes a tumbling or swinging motion with oscillations about the shear plane (also called

kayaking) depending on Cas. They also studied RBC dynamics for different viscosity

contrasts. They find the same behavior as for oblate spheroids, when λ ≤ 1. However, for

larger values of the internal viscosity, they observe a tendency of the RBC towards a rolling

motion: their conclusions are based on the trend of the evolution curves, as too short

computational times are used in the simulations to observe the converged RBC regime.

Wang et al. (2013) considered oblate capsules with axis ratio 2/3 for 0.003 ≤ Cas ≤ 0.3

and λ = 1. They also find for Cas ≥ 0.03 that the capsule tends towards the shear

plane where it takes a tumbling or oscillating–swinging motion. In their study, the results

depend on its initial orientation. The off-plane motion of an oblate capsule with a strain–

softening membrane has finally been modeled by Omori et al. (2012) for two values of

capillary number (Cas = 0.3 and 1.0), but they have failed to recognize a rolling motion

for Cas = 1.

All those results indicate that the dynamics of prolate and oblate capsules are very

different. If the dynamics of prolate spheroidal capsules are rather well understood, such

is not the case for oblate ones, for which a comprehensive study has still to be performed.

Indeed, there remain a number of pending questions:

• Does the final motion of an oblate capsule really depend on the initial orientation?

• What is the high flow strength motion of a capsule?
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• How does the capsule internal viscosity affect the motion?

• How long does it take for a capsule to reach an equilibrium configuration?

The present work aims at investigating the dynamics of an oblate capsule subjected

to a simple shear flow under Stokes flow conditions. Our objective is to find the stable

equilibrium configurations and to study the influence of the capillary number and viscosity

ratio, since experimentally the external viscosity is rarely matched with the viscosity

of the internal fluid. In particular we shall show that the final equilibrium motion of

an oblate capsule does not depend on its initial orientation, in contrast with previous

conclusions. Another important objective is to determine the time required for an oblate

capsule initially placed off the shear plane to reach its mechanical equilibrium state. Such

information is crucial when setting up experiments to observe the behavior of oblate

capsules. Specifically, it is important to make sure that the observed motion is indeed

steady. Similarly, this information should also be useful to set up the proper computational

times of models.

To solve the fluid–structure interaction problem, we use the numerical model developed

by Walter et al. (2010) and Foessel et al. (2011), based on the coupling of a membrane

finite element method for the capsule deformation with a boundary integral method for

the internal and external flows. We briefly outline the problem and the numerical method

in section 7.2. The equilibrium configurations of an oblate capsule initially positioned off

the shear plane are studied in section 7.3 as well as the influence of the viscosity ratio

between the internal and external flow. The characteristic times to reach equilibrium are

evaluated in section 7.4 as a function of the viscosity ratio, before discussing all the results

in section 7.5.

7.2 Method

7.2.1 Problem statement and numerical method

We consider a capsule with a very thin membrane, modelled as an isotropic hyperelastic

surface St with surface shear modulus Gs, area dilatation modulus Ks and negligible

bending resistance. In the reference undeformed state, the capsule is an oblate spheroid

with aspect ratio a/b = 0.5, where 2a denotes the revolution axis length, and 2b the

length of any two orthogonal long axes. The problem length scale ℓ = (ab2)1/3 is defined

as the radius of the sphere with the same volume as the capsule. For a/b = 0.5, we find

a/ℓ = 0.63 and b/ℓ = 1.26.

We define the reference frame F ′ (O, e′

x, e′

y, e′

z), where O is the capsule centre of mass

and e′
x, e′

y, e′
z are the principal axes of the undeformed capsule. The revolution axis is
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Figure 7.1: Reference (a) and deformed (b) configurations of an oblate capsule subjected
to a simple shear flow. The initial capsule orientation is defined by the angle ζ(0) between
the capsule revolution axis e′

z and the flow vorticity axis ez. The points Mi(t) represent
the tip of the capsule principal axes and the points Ai(t) are the points initially located
at the tip of the capsule principal axes.

initially along e’z, so that the initial capsule profile is given by
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= 1, (7.1)

where the coordinates (x′

s, y′

s, z′

s) correspond to the position of a material point on the

membrane.

The capsule is suspended in an unbounded Newtonian incompressible fluid of viscosity

µ. The inner fluid is also Newtonian and incompressible with viscosity λµ, where λ is the

internal–to–external viscosity ratio. The density of the internal and surrounding fluids

are equal, thus excluding gravity effects. The Reynolds number of the flow is assumed to

be negligible, so that the internal and external flows are governed by the Stokes equations.

The capsule is subjected to a simple shear flow with shear rate γ̇ given by

v∞ = γ̇yex (7.2)

in the laboratory reference frame F (O, ex, ey, ez).

At time γ̇t = 0, the capsule orientation in space is defined by the angles between the

basis vectors of the reference frames F ′ and F . The capsule revolution axis e′
z makes an

angle ζ(0) with the vorticity axis, such that (e′

z, ez) = (e′

y, ey) = ζ(0) and (e′

x, ex) = 0

(Figure 7.1a). Thus ζ(0) = 0 or π/2 corresponds to a capsule with its revolution axis

parallel to the vorticity axis or to the shear plane, respectively.
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The problem is solved numerically using the Boundary Integral – Finite Element

method (BI–FE) (Foessel et al., 2011). This method couples a boundary integral tech-

nique to compute the fluid flows (inside and outside the capsule) to a finite element

method to compute the capsule membrane deformation. The method is summarized in

this section, but more details are available in Walter et al. (2010), Barthès-Biesel et al.

(2010) and Foessel et al. (2011).

The numerical procedure is based on a Lagrangian tracking of the position of the

membrane material points of St. The capsule deformation and in–plane principal stretch

ratios λs1 and λs2 may thus be computed from the position of the membrane points at

each time. The capsule wall is assumed to be strain–hardening and to follow a Skalak law

(Skalak et al., 1973). The principal elastic tensions T1 and T2, which are forces per unit

length of deformed membrane, are then given by

T1 =
Gs

λs1λs2

[

λ2
s1(λ

2
s1 − 1) + C(λs1λs2)2

(

(λs1λs2)2 − 1
)]

(7.3)

with a corresponding expression for T2 obtained by permuting indices 1 and 2. The

surface shear and area dilatation moduli are then related by Ks = Gs(1 + 2C), where C

is a constant such that C > −1/2.

The finite–element method is used to solve the equilibrium equation of the membrane

∇s · T + q = 0, (7.4)

and find the load q(xs, t) exerted by the fluids on the membrane at time t. In Equation

(7.4), the symbol ∇s represents a surface gradient.

Knowing the viscous load q, the velocity v(x, t) of the membrane points is deduced

from a boundary integral formulation for the three–dimensional motion of the internal

and external fluids

v(xs, t) = v∞(xs)−
1

8πµ

∫

St

(

I

‖ r ‖ +
r ⊗ r

‖ r ‖3

)

· q(ys, t) dS(ys)

− 1− λ

8π

∫

St

(

v(ys, t)− v(xs, t)
)

· r ⊗ r ⊗ r

‖ r ‖5
· n(ys) dS(ys), (7.5)

where v∞ is given by Equation (7.2), I is the identity tensor, n is the unit vector normal

to St and r = xs − ys is the distance between the point xs, where the calculation is

performed, and the point of integration ys. The new position of the membrane points at

the next time step is found by using an explicit second–order Runge–Kutta method, to

solve the kinematic condition, which relates the membrane velocity to the time derivative
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of the Lagrangian position of the membrane points

v(xs, t) =
∂xs(Xs, t)

∂t
, xs ∈ St (7.6)

where Xs represents the position of a point in the reference configuration.

In general, the capsule motion and deformation are governed by:

• the capsule initial orientation ζ(0),

• the membrane constitutive law,

• the ratio of the area dilatation and shear moduli Ks/Gs,

• the capillary number Cas = µγ̇ℓ/Gs, which measures the ratio between the viscous

and the elastic forces,

• the viscosity ratio λ.

We assume that the capsule membrane follows the Skalak law with C = 1 and study

the influence of ζ(0), Cas and λ on the capsule dynamics.

7.2.2 Discretization, stability and convergence

One of the advantages of the BI–FE method is that all the problem unknowns are to

be determined on the capsule surface and not in the entire domain volume. The capsule

surface is meshed by subdividing sequentially the 20 triangular faces of an icosahedron

inscribed in a sphere until the desired number of elements is reached. Nodes are then

added at the middle of all the element edges and projected onto the sphere in order to

generate second–order P2 elements. This mesh is deformed into an ellipsoidal mesh with

the desired axis ratio (Walter et al., 2011). All the results are shown for a mesh with 2562

nodes and 1280 triangular curved elements.

The numerical method is stable when the time step satisfies the condition

γ̇ △ t < O(
∆xCas

ℓ
), (7.7)

where ∆x is the typical mesh size (Walter et al., 2010). Here, ∆x = 0.075. We use

γ̇ △ t = 5× 10−3 for Cas ≥ 0.5 and decrease the time step proportionally for lower Cas.

To reach the steady state of a capsule initially off the plane, computational times of

the order of γ̇t = 102−103 are needed. In order to estimate the numerical error over such

long computational times, we compute the relative error ǫV = |V − V0|/V0 on the capsule

volume V , where V0 is the initial volume of the capsule. The error at γ̇t = 100 is
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• O(10−2) for λ < 4 and Cas ≤ 0.6,

• O(10−3) for λ < 4 and Cas > 0.6 and for all values of Cas for λ ≥ 4.

7.2.3 Result analysis

The capsule motion in space is complex. We characterize it by simultaneously studying the

overall shape evolution (Eulerian description) and the motion of the membrane material

points (Lagangian tracking).

The global geometry of the capsule is evaluated by means of the ellipsoid of inertia

of the deformed shape, with principal axes denoted Li(t) (i = 1, 2, 3) such that L1(t) >

L2(t) > L3(t) at time t. The corresponding unit principal vectors in F are vi(t) (v1(0) =

e′

x, v2(0) = e′

y and v3(0) = e′

z). The capsule position in space is then determined from the

angle ζ(t) = (v3(t), ez) between the capsule small axis and the vorticity direction (Figure

7.1b). We also follow the motion in time of the point M3(t), which corresponds to the

intersection between the small axis direction v3(t) and the membrane.

The membrane rotation is deduced from the motion in time of the points Ai(t), which

were initially located on the intersections between the vi(0) directions and the membrane

(Figure 7.1). We will for instance compare the motions of the points A3(t) and M3(t) in

order to analyze eventual membrane rotation. We denote ξ(t) = (OA3(t), ez) the angle

between the OA3(t) and the vorticity axis (Figure 7.1b). At time γ̇t = 0, the points A3(0)

and M3(0) are superimposed, so that ξ(0) = ζ(0).

7.3 Stable equilibrium configurations

7.3.1 Equilibrium configurations of a capsule with λ = 1

Obvious equilibrium positions

Two obvious equilibrium configurations exist for an oblate capsule placed in a shear flow

under Stokes flow conditions: when the capsule revolution axis is initially in the shear

plane or perpendicular to it.

When the capsule revolution axis is initially in the shear plane (ζ(0) = ξ(0) = 90°,

A3(0) and M3(0) in the shear plane), we have seen in the introduction that the capsule

experiences tumbling at low Cas followed by a transition towards swinging for higher

values of Cas. Figure 7.2 illustrates the characteristic dynamics of the capsule during

half a period in both regimes (see Walter et al. (2011) for more details). In this case,

the points A3(t) and M3(t) remain in the shear plane for all the values of Cas and time

(ζ(t) = ξ(t) = 90°).
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Figure 7.2: Capsule shape evolution over one half period at steady state when ξ(0) = 90°
(λ = 1). The grey scale corresponds to the normal component of the load q · n on the
membrane, with maximum values depending on Cas. (a) Cas = 0.01: tumbling regime
(max(q·n/Gs) = 0.15); (b) Cas = 0.3: swinging regime (max(q·n/Gs) = 2); (c) Cas = 1.5:
quasi-steady tank-treading regime (max(q ·n/Gs) = 6). The value of the non–dimensional
time γ̇t is given below each shape. The points A1(t) (�) and A3(t) (•) are initially on the
short and long axes respectively in the shear plane. The point M3(t) (△) represents the
tip of the smallest capsule principal axis (see Figure 7.1).
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Figure 7.3: Capsule shape evolution over one half period at steady state when ζ(0) = 0°
(λ = 1): capsule in rolling regime. (a) Cas = 0.01 (max(q · n/Gs) = 0.1); (b) Cas = 1.5
(max(q · n/Gs) = 5). Same legend as in Figure 7.2. The points A3(t) and M3(t) are
superimposed in (a), whereas A3(t) is on the vorticity axis and M3(t) is in the shear plane
in (b).

When the capsule revolution axis is initially along the vorticity axis (ζ(0) = ξ(0) = 0°,

A3(0) and M3(0) on the vorticity axis), the capsule cross–sections parallel to the shear

plane are initially circular. They are deformed by the shear flow and the membrane rotates

around the deformed shape. The capsule motion is called rolling, since the membrane

rotates around the deformed cross–section like a (deformed) wheel. At low Cas (Figure

7.3a), the capsule cross–section is not much deformed so that the points M3 and A3

remain on the vorticity axis (ζ(t) = ξ(t) = 0°). As the capillary number increases, the

cross–section elongates in the straining direction (Figure 7.3b): the capsule small axis

v3 and hence the point M3 may eventually become located in the shear plane, while the

point A3 remains on the vorticity axis. In this case, the asymptotic values of the angles

are ζ(t) = 90° and ξ(t) = 0°.

Note that for large Cas, the oscillation amplitude of the swinging regime observed

when ζ(0) = 90° tends to zero so that the capsule experiences a quasi tank–treading

motion (Figure 7.2c). This regime is visually the same as the rolling motion observed

when ζ(0) = 0° at large Cas (Figure 7.3b). The only way to distinguish between the

two regimes is by monitoring the position of the point A3 and the angle ξ(t). This shows

that the best parameter to study the capsule motion is the angle ξ(t). Experimentally,

it can be achieved by attaching markers to the membrane, but it is difficult to perform.

Resorting to numerical simulations is thus useful to distinguish between those regimes.
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Stable equilibrium of an initially off–plane capsule

In Stokes flow, the mechanical stability of an equilibrium configuration can only be tested

by perturbing the capsule orientation, which corresponds here to positioning the revolution

axis with an initial orientation ξ(0) = ζ(0) ∈ ]0o, 90o[. We then follow the time evolution

of the angles ζ(t) (to determine the overall capsule position) and ξ(t) (to determine the

type of capsule motion). Note that if ξ(t)→ 90°, the capsule tends towards the tumbling

or the swinging regime (section 7.3.1). On the other hand, if ξ(t) → 0°, the capsule

stable configuration is the rolling motion. If ξ(t) and ζ(t) tend towards any other value

in ]0, 90°[, the capsule takes at equilibrium a wobbling motion, where it precesses and

oscillates about the vorticity axis.

We first investigate whether the initial orientation affects the final equilibrium config-

uration. We first consider a weak flow strength (Cas = 0.01) and three different initial

orientations (ζ(0) = ξ(0) = 5°, 45°, 75°). As shown in Figure 7.4a, the angles ζ(t) and

ξ(t) both tend to 90° independently of the initial orientation. The only effect of the initial

position is the time it takes to reach equilibrium, which increases the further the capsule

initially is from its final equilibrium position. For Cas = 0.01, the stable equilibrium

regime is a quasi–solid tumbling motion (with no membrane rotation), which explains

why the curves of ζ(t) and ξ(t) are superimposed. For a larger flow strength Cas = 0.3,

the angles ζ(t) and ξ(t) both converge towards 90° but do not follow the same time–

evolution during the transition phase (Figure 7.4b). During transient, the capsule takes

a global oscillating swinging motion (evidenced by the oscillations of ζ(t)), during which

the membrane rotates to bring the point A3 in the shear plane. This result is independent

of the initial orientation (not shown).

When the capsule tends to position its small axis OM3 and the point A3(t) in the

shear plane, the resulting motion is identical to the one shown in Figure 7.2 when the

capsule revolution axis is initially in the shear plane (ζ(0) = ξ(0) = 90°). In conclusion,

the tumbling and swinging motions are found to be the stable equilibrium configurations

of an oblate capsule for low and medium–range capillary numbers such that Cas < 0.9.

However, for larger values Cas ≥ 0.9, the principal short axis no longer remains within

the shear plane: it exhibits an oscillation about the shear plane, which is superimposed

onto the in–plane oscillation. The equilibrium state of the capsule thus evolves from

a swinging to a wobbling (or oscillating–swinging) motion: the point M3(t) oscillates a

little about the shear plane and the point A3(t) precesses around the vorticity axis with

a constant mean inclination, as indicated in Figure 7.5. As Cas increases, the mean

angle ξ(t) = (OA3(t), ez) decreases until the capsule changes drastically its motion and

starts rolling. For Cas ≥ 1.5, the capsule stable equilibrium configuration is rolling. It is

illustrated in Figure 7.6a, which shows that for Cas = 2 the angle ζ(t) tends towards 90°
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Figure 7.4: Transient evolution of the angles ζ(t) (dashed line) and ξ(t) (full line) for
different initial orientations (λ = 1). (a) Tumbling motion; (b) swinging motion. The
grey zones represent the convergence criteria.
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Figure 7.5: Wobbling motion for three initial orientations ξ(0) = 30°, 45° and 60° at
Cas = 0.9 (λ = 1). The small axis oscillates a little about the shear plane, while A3(t) pre-
cesses and oscillates around the vorticity axis with an inclination which tends to 44°±12°
for all three initial orientations.
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Figure 7.6: Time evolution of the angles ζ(t) and ξ(t) for an initial orientation ξ(0) = 15°,
at Cas = 2 (λ = 1). (a) Zoom on the initial time response (γ̇t ∈ [0, 500]), which indicates
that the capsule tends towards a rolling motion; (b) long time response followed by a
relaxation phase (v∞ = 0 for γ̇t ≥ 1500), where both ξ and ζ go to zero. Same legend as
in Figure 7.4.
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Figure 7.7: Time evolution of the angles (a) ζ(t) and (b) ξ(t) for different viscosity ratios
λ (ζ(0) = 45° ,Cas = 0.2).

whereas ξ(t) converges towards 0°, the smallest axis being in the shear plane because of the

large profile elongation. In order to verify that the capsule does have a rolling motion, we

have run the following test: once the capsule has reached its equilibrium configuration, we

set the far–stream velocity of the external flow at zero and follow the capsule re-orientation

during relaxation. The second part of the graph of Figure 7.6b (γ̇t ≥ 1500) shows that

the angle ξ(t) remains equal to 0°, whereas ζ(t) decreases suddenly to 0°, when the flow

is stopped. The capsule regains its oblate shape and has its revolution axis aligned with

the vorticity axis. It indicates that, at equilibrium the capsule had previously assumed a

rolling motion that is identical to the one observed when the short axis is initially aligned

with the vorticity axis (ζ(0) = ξ(0) = 0°), as shown in Figure 7.3b.

To summarize the cases for λ = 1, we have shown that, for Cas < 0.9, the situation is

identical to the one considered by Walter et al. (2011), where the capsule revolution axis

is initially positioned in the shear plane (ζ(0) = ξ(0) = 90°). Correspondingly, the capsule

assumes a quasi–solid tumbling motion for Cas < 0.02 and a swinging motion for 0.05 <

Cas < 0.9. The two regimes are separated by a transition motion characterized by the

transient occurrence of a quasi–circular profile within the shear plane (Cas ∈ [0.02, 0.05]).

For 0.9 ≤ Cas ≤ 1.5, the capsule goes through a wobbling motion (also called oscillating

precession), where its small axis oscillates about the shear plane while the point A3(t)

precesses about the vorticity axis and gets nearer to it as Cas increases. Ultimately, for

large values of Cas (Cas ≥ 1.5), the capsule has a rolling motion. All these equilibrium

states are independent of the initial orientation.

7.3.2 Influence of λ on the equilibrium configurations

We now study the influence of the viscosity ratio on the stable equilibrium configurations

of the oblate capsule. We consider only viscosity contrasts larger than unity, as it was
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shown for initially spherical capsules that λ < 1 had little influence on the dynamics

(Foessel et al., 2011). As the mechanical equilibrium configuration is independent of the

initial orientation when ζ(0) ∈ ]0o, 90o[, we position the capsule with an initial angle

ζ(0) = 45° and increase the viscosity of the internal fluid. Figure 7.7 shows the temporal

evolution of the angles ζ(t) and ξ(t) for λ = 1, 2, 4 and 8.5 in the case of a capillary

number Cas = 0.2. For λ = 1, the capsule exhibits a swinging motion, as previously

discussed. However, for λ = 2, the angle ζ(t) converges towards a value close to 90° while

ξ(t) oscillates about 77°: this indicates that a wobbling motion has set up. When the

viscosity ratio is further increased (λ = 4), a transition to rolling occurs: the angle ξ(t)

tends to 0° while the capsule short axis exhibits dampened oscillations about the shear

plane. For still higher values (λ = 8.5), the flow strength is not high enough to deform

the capsule much: the smallest semi–diameter is on the vorticity axis (ζ → 0°) and the

profile in the shear plane is only slightly deformed. This shows that the viscosity ratio has

a strong influence on the capsule equilibrium state for medium–range capillary numbers.

The combined effect of the viscosity ratio and capillary number is summarized in

Figure 7.8. For λ < 3, the mechanical equilibrium configurations correspond to the

ones observed for λ = 1. The viscosity ratio, however, influences the capillary number at

which the tumbling–to–swinging and swinging–to–rolling transitions occur. The transition

between tumbling and swinging takes place at higher Cas, since the increase in internal

viscosity reduces the capsule deformability. For example, the transition is delayed from

0.02 ≤ Cas ≤ 0.05 when λ = 1 to 0.06 ≤ Cas ≤ 0.09 when λ = 2. On the contrary, the

transition between swinging and rolling rather tends to occur for lower values of Cas, as λ

increases. For example, at Cas = 0.5, the capsule converges towards the swinging regime

at λ = 1 and towards the rolling regime at λ = 2.

The direct consequence of these two observations on the regime transitions is the

disappearance of the swinging motion for λ ∼ 3. For λ ≥ 4, the stable mechanical

equilibrium states are then only the tumbling and the rolling regimes. The capillary

number of transition between tumbling and rolling further decreases with λ: at high λ,

the rolling regime thus becomes the main mechanical equilibrium configuration that is

likely to be observed (Figure 7.8).

It is of interest to compute the capsule deformation within the shear plane Dxy =

(L− B)/(L + B), where L and B are the longest and shortest semi–axes of the ellipsoid

of inertia in the shear plane, respectively. The deformation Dxy is a quantity which is

easily measured in the swinging or rolling regimes. We also provide the capsule semi-axis

length Lz along the vorticity axis, as it enables to completely specify the geometry of the

converged capsule shape together with Dxy and the constant volume constraint. Since

both Dxy and Lz oscillate in the swinging regime, we give values that are averaged over
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Figure 7.8: Sketch of the mechanical equilibrium configurations of an oblate capsule as a
function of the capillary number Cas and viscosity ratio λ. The grey zones represent the
tumbling–to–swinging and swinging–to–rolling transitions.
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Open symbols: tumbling/swinging regime; full symbols: rolling regime.

ten periods. For λ = 1, we recover the results of Walter et al. (2011), which show a small

decrease of Dxy and Lz during the tumbling–to–swinging transition, followed by a steady

increase of both quantities with increasing Cas (Figure 7.9). A very similar behavior

is found for λ = 2. For Cas ≥ 0.2 and λ ≥ 3, the rolling regime prevails, where Dxy

steadily increases with Cas but decreases with λ, as expected. It should be noted that

the deformation in the rolling regime is almost the same as the one which is found for

a viscous spherical capsule (Foessel et al., 2011). This seems to indicate that the shear

plane deformed profile of an elastic capsule depends only on Cas and the viscosity ratio

and is independent of the surface to volume ratio. Of course, this observation would need

to be verified, but this is outside the scope of the present paper.
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7.4 Time to reach the equilibrium configuration

All the previous results indicate that an oblate capsule placed off the shear plane requires

a very long time τ of the order of γ̇τ = 102 − 103 to reach its mechanical equilibrium

configuration. We have seen that the time τ depends on the initial orientation ζ(0), the

capillary number Cas and the viscosity ratio λ. In this section, we study the convergence

time of an oblate capsule. Such information can be useful to experimentalists for designing

experimental protocols and to numericians for choosing adequately the computational

time.

As is clearly apparent from Figures 7.4 and 7.6, the convergence time is difficult to

determine with precision. We define an estimate of τ as the time it takes for a given angle

(ξ(t) or ζ(t)) to be equal to 10% of the difference between its initial value and its value

at equilibrium state. For example, based upon the time evolution of ζ , the convergence

time τζ would be such that:

|ζ(τζ)− ζ∞| = 0.1|ζ(0)− ζ∞| (7.8)

where ζ∞ is the equilibrium value of ζ . The same definition applies to the convergence

time τξ based on ξ. The corresponding convergence areas are shown as grey zones in

Figures 7.4 and 7.6. Note that their width depends on the difference between the initial

and final orientations.

In the tumbling regime, the initial orientation influences significantly the convergence

time as is clearly apparent in Figure 7.4a. However, in the swinging regime, we have

checked that ζ(0) has little influence on either τζ or τξ. The same conclusion holds true

for the rolling regime for |ζ(0)−ζ∞| ≤ 60° . We thus study an average off–plane inclination

|ζ(0)− ζ∞| = 45° and show the combined effects of Cas and λ. In the wobbling regime,

the time to reach equilibrium is fast for ζ , but very slow for ξ and depends significantly on

the initial orientation of the capsule (Figure 7.5). We therefore do not try to determine

it.

The convergence time depends significantly on whether it is based on ζ(t) or on ξ(t) as

is apparent in Figure 7.10a, where γ̇τ is shown as a function of Cas for λ = 1. Indeed, in

the swinging regime, the convergence time τξ is roughly twice τζ . We note that the conver-

gence time increases with Cas in the swinging regime and decreases in the rolling regime.

The effect of the viscosity ratio is that it significantly increases τξ in the swinging regime

as one could expect, since more energy is dissipated when the viscosity ratio increases. In

the rolling regime, the response time decreases when the viscosity ratio increases because

the capsule is less deformed and tends to behave like a rolling axisymmetric solid body.

Note that experimentally, it is ζ(t) which is readily measured: to obtain ξ(t), one would
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Figure 7.10: Convergence time for ζ(0) = ξ(0) = 45°. (a) Effect of the capillary number
for λ = 1; (b) Effect of the viscosity ratio for moderate Cas on the convergence time
based on ξ (open symbols: swinging regime, full symbols: rolling regime). The grey zone
and the vertical line represent the transition from in–plane to rolling motion.

need to attach a marker to the membrane and follow its motion over time. One must also

be careful experimentally when an apparent steady inclination is obtained for ζ : it can

be misleading, since the membrane will not be at equilibrium with the fluid until ξ has

reached its final position.

7.5 Discussion and conclusion

The mechanical equilibrium configurations of an oblate capsule subjected to a simple shear

flow have been determined numerically by initially positioning the capsule revolution axis

off the shear plane and following the capsule dynamics. The study has been conducted

for a capsule of aspect ratio a/b = 0.5 with a strain–hardening behavior of the Skalak

law type (Skalak et al., 1973) and different values of the viscosity contrast λ. We have

been very careful to make sure that the equilibrium states were time–converged. We show

that for the motion of the capsule to be unambiguously characterized, it is necessary to

monitor two angles, which measure the general orientation ζ(t) of the deformed profile

and the position ξ(t) of the capsule initial apex.

Contrarily to previous results of the literature, we find that the equilibrium motion

of an oblate capsule is independent of the initial position. For example at λ = 1 (an

extensively studied case), the tumbling and the swinging regimes, obtained when the

capsule axis is in the shear plane, are mechanically stable equilibrium configurations

at low and moderate values of Cas (Cas < 0.9). When Cas increases, the capsule axis

migrates away from the shear plane: a wobbling precession about the vorticity axis occurs

for intermediate values of Cas until a stable rolling motion is reached where the capsule

initial apex is located on the vorticity axis (Cas ≥ 1.5). It is interesting to note that for
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a prolate capsule with a/b = 2 and λ = 1, the stable equilibrium states occur in reverse

order as Cas increases: rolling, wobbling and swinging.

Cordasco & Bagchi (2013) also found that the capsule tends towards the shear plane,

but they observe a kayaking (i.e. with oscillation about the shear plane) or a precession–

to–kayaking motion, which depend on the initial orientation. This conclusion is due to

too short computational times (γ̇t ≤ 100). Indeed, we also find such a kayaking motion

(see Figure 7.4b), but it is transient and dies out with time. As for Wang et al. (2013),

they find different motion modes which depend on the initial orientation. This may be

due to small inertia effects, as the Reynolds number is small but finite in their study,

whereas it is exactly zero in ours. Furthermore, they only considered moderate values of

Cas and thus missed the rolling motion.

The new results provide detailed information on the influence of the internal–to-

external viscosity ratio on the mechanical equilibrium configurations. We find that, for

moderate value (λ < 4) the internal viscosity limits the range of Cas for which a swing-

ing motion is possible. This can be easily understood, as high internal viscosity leads

to high viscous energy dissipation during membrane rotation. In fact for large enough

viscosity (λ ≥ 5), the only in–plane motion is the quasi–solid tumbling motion. The other

effect of large internal viscosity is to shift to low Cas values the transition from in–plane

to rolling motion. A large internal viscosity leads to a significant tension jump across

the interface and thus to membrane buckling, as reported by Foessel et al. (2011) and

Yazdani & Bagchi (2013). The capsule deformability thus has a great influence on the

mechanical equilibrium configuration, which depends on the fluid–structure interactions.

Dupire et al. (2012) have conducted an extensive study of the dynamics of human red

blood cells in simple shear flow. In particular, they find that red blood cells converge

towards a rolling regime when they flow in a Dextran solution (µ = 7.15 mPa.s) under

a shear rate between 10 s−1 and 15 s−1. The characteristic length for a red blood cell

is ℓ ∼ 2.8 µm, based on a cell volume of order 100 µm3 (Klöppel, 2012). The value of

shear elastic modulus Gs depends on the constitutive law. Hochmuth & Waught (1987)

estimated Gs ≃ 4 − 5 µN/m for a strain–hardening law, such as the Skalak law. Using

Gs = 4 µN/m, the capillary number that corresponds to the rolling motion is then

Cas = 0.05 ∼ 0.075 at λ ≃ 1. This value is about 20 − 30 times smaller than the

one we predict for the on-start of rolling at λ = 1. However, a RBC has a significant

membrane viscosity of order µs ∼ 1 × 10−7 Pa.s.m, leading to a dimensionless surface

viscosity parameter η = µs/(µℓ) ∼ 5. The membrane viscosity effects add to those of the

internal viscosity (Diaz et al., 2001), so this may explain why the RBC rolls at low values

of Cas.

Dupire et al. (2012) have also highlighted the influence of the membrane deformability
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on the stable equilibrium configuration. They observed that when the red blood cell

membrane is stiffened, the cell no longer tends towards the rolling motion but towards

the tumbling motion. This is consistent with the present results, since stiffening the cell

membrane corresponds to increasing Gs and thus decreasing Cas.

We have also shown that a capsule initially placed off the shear plane takes a fi-

nite time to reach its stable equilibrium configuration depending on its initial orienta-

tion, flow strength and viscosity ratio. For a medium displacement from the shear plane

(ζ(0) = 45°), the non-dimensional convergence time varies between 50 and 400 at λ = 1

and Cas ≤ 0.5. Consequently, it can sometimes be difficult to observe numerically or

experimentally the mechanical equilibrium configuration. For example, for λ = 1 and

γ̇ = 1s−1 (respectively 10s−1), we find that a cell initially oriented at ζ(0) = 45° takes

about 80 s (resp. 8 s) to reach tumbling (Figure 7.4a), 150 s (resp. 15 s) for swinging

(Figure 7.4b) and 600 s (resp. 60 s) for rolling (Figure 7.6). As the typical window time

to experimentally observe capsules or red blood cells is inferior to 1 minute, one must be

careful to check that equilibrium conditions have indeed been reached.

7.6 Additional results: influence of the aspect ratio

on the capsule dynamics

In this section, we summarize additional results obtained on the mechanical equilibrium

configurations of prolate and oblate capsules in shear flow. We consider only the case

of a capsule with a membrane devoid of bending resistance, which follows the Skalak

law (C = 1). The results are presented in the form of phase diagrams as a function of

the capillary number Cas and aspect ratio a/b. Firstly, we analyze the influence of the

aspect ratio and viscosity ratio on the capsule regime, when the revolution axis is initially

positioned in the shear plane. We then investigate the influence of the aspect ratio on the

stable equilibrium configurations, when the revolution axis is initially off the shear plane

at λ = 1.

7.6.1 Motions observed when ζ0 = 90°

The influence of the viscosity ratio and aspect ratio on the dynamics of an ellipsoidal

capsule is presented in Figure 7.11 for a capsule having its revolution axis in the shear

plane. The results are shown as a function of the capillary number Cas for three viscosity

ratios λ = 1, 0.5 and 5. In each case, we recover the tumbling motion at low Cas and

the swinging motion at high Cas (cf Ramanujan & Pozrikidis (1998), Sui et al. (2008)

and Walter et al. (2011)). The viscosity ratio does not change qualitatively the capsule
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motion but has an influence on the value of the capillary number that corresponds to the

transition between tumbling and swinging.

To define the transition between tumbling and swinging, we use the criterion intro-

duced by Walter et al. (2011): the region of transition is characterized by a Taylor pa-

rameter

D12 =
L1 − L2

L1 + L2

< 0.05 (7.9)

To unify the results, we denote L1 and L2 the lengths of the principle axes of the ellipsoid

of inertia, which are located in the shear plane. L1 and L2 are chosen such as L1 ≤ L2.

For a spherical capsule (a/b = 1), it is difficult visually to differentiate a tumbling

motion and a tank–treading motion. In order to represent the transition between these

two regimes, we use the relation introduced by Barthès-Biesel & Rallison (1981)

D12 =
25
12

Cas +O(Ca2
s). (7.10)

and look for the value of D12 such as the Eq. (7.9) is satisfied.

For λ = 0.5, 1 and 5, the tumbling–to–swinging transition appears at higher Cas for

prolate capsules (a/b > 1) than for oblate capsule since a much higher energy is necessary

for an prolate capsule to reach the shape for which D12 ≈ 0 (Walter et al., 2011). It also

explains why the transition has a "V" shape. In fact, the further the capsule shape departs

from the sphere, the more difficult it is to deform its cross–section in the shear plane to

have D12 ≈ 0: more energy is thus needed.

Furthermore, the values of Cas, for which the tumbling–to–swinging transition ap-

pears, depends on the viscosity ratio. To determine the influence of the viscosity ratio,

Figure 7.12 represents a schematic view of the transition found in Figure 7.11. The de-

crease of the viscosity ratio to λ = 0.5 does not change significantly the transition: it

appears approximately at the same values of Cas (Figures 7.11a-b and 7.12). Now, if we

increase the viscosity ratio λ to 5, the transition appears at higher Cas than at λ = 1

since more energy is needed to deform the capsule. The tumbling is thus stable on a larger

range of Cas.

7.6.2 Stable equilibrium configurations

Figure 7.13 shows the influence of the capillary number Cas and aspect ratio a/b on the

stable equilibrium configurations of ellipsoidal capsules initially positioned off the shear

plane at λ = 1. Figure 7.13 shows that swinging and rolling are the two main regimes,

which are observed in the range of values of Cas that was studied. We show that an oblate

capsule adopts the tumbling motion at equilibrium at very low Cas (Cas ≈ 10−2), similarly
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Figure 7.11: Ellipsoidal capsule with its revolution in the shear plane: phase diagram as
a function of the aspect ratio a/b and the surface capillary number Cas for a viscosity
ratio (a) λ = 1, (b) 0.5 and (c) 5.
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Figure 7.12: Ellipsoidal capsule with its revolution in the shear plane: schematic view of
the transition tumbling/swinging for three viscosity ratios λ.

to Wang et al. (2013), but they found it at even lower values of Cas (Cas ≈ 5× 10−4).

It is interesting to note that the swinging and rolling regimes are reversed when Cas

increases: an oblate capsule experiences a transition from swinging to rolling motion,

which is the opposite for a prolate capsule.

Figure 7.13 also shows that the capillary number at the rolling–to–swinging transition

(respectively swinging–to–rolling) increases when the aspect ratio increases (respectively

decreases). As the transition is governed by the level of deformation, more energy is

required to reach it, when the capsule is ellipsoidal with a large length difference between

the revolution axis and the two orthogonal axes.
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Figure 7.13: Stable equilibrium configurations for an ellipsoidal capsule initially off the
shear plane: influence of the capillary number Cas and the aspect ratio a/b at λ = 1.
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Chapter 8

Conclusions and perspectives

8.1 Conclusions

For the first time, we have enriched the numerical method developed by Walter et al.

(2010) with a shell finite element method in order to study the influence of a small wall

thickness on the capsule deformation. The fluid–structure problem of a capsule in an ex-

ternal flow is solved by coupling a shell finite element method for the capsule deformation

with a boundary integral method for the internal and external flows. Using a shear–

membrane–bending model, we implement, for the first time, a hyperelastic constitutive

law (strain–hardening or strain–softening) for the membrane effects combined with the

generalized Hooke’s law for the bending effects to model the thin capsule wall behavior.

Thanks to shell finite elements based on the Mixed Interpolation Tensorial Components

technique, the numerical method is stable and free of locking, even when small values of

wall thickness are considered.

The influence of a small value of bending resistance on the dynamics of an initially

spherical capsule subjected to a simple shear flow or a planar hyperbolic flow is studied

using this method for various constitutive laws. We show that, in this case, the main de-

formation mode is the stretching of the mid–surface. Membrane models are thus adequate

to predict the elastic behavior and the deformation of spherical capsules subjected to a

simple shear flow or a planar hyperbolic flow. However, when a capsule is not subjected

to a shear flow such as in the case of a parabolic flow, bending resistance can reduce the

capsule deformation compared to the one obtained with a membrane model.

Furthermore, if we are interested in the post–buckling behavior, a shell model is nec-

essary since the wall bending resistance plays a role locally in the regions where buckling

occurs. Its influence is studied in the low flow strength regime, for which wrinkling of the

wall is observed to persist at steady state. We show that the wrinkle wavelength only

depends on the bending number, which compares the relative importance of bending and

shearing, and we provide the correlation law. These results on the dynamics of a capsule

with bending resistance are interesting as they enable to determine values of bending

resistance and shear modulus from experiments on capsules in a simple shear flow or a

planar hyperbolic flow at low flow strength.

As the dynamics of a spherical capsule is different from the one of an ellipsoidal capsule,
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we have determined, for the first time, the stable equilibrium configurations of a prolate

capsule subjected to a simple shear flow, using a membrane model. The stable equilibrium

configurations of an oblate capsule have also been determined. We show that the stable

equilibrium configurations are independent of the initial capsule orientation (if the capsule

is not already in a equilibrium configuration) but depend on the surface capillary number,

the viscosity ratio and the aspect ratio. We show that the tumbling and swinging regime,

which were previously observed when the capsule revolution axis is initially positioned

in the shear plane, do not correspond necessary to a stable equilibrium configuration.

According to the capsule aspect ratio and the surface capillary number, we highlight

that at equilibrium, the capsule converges towards the configuration observed when the

capsule revolution axis is initially aligned with the vorticity axis. The capsule assumes

also a rolling motion. In particularly, we show that when the surface capillary number

increases, the stable equilibrium configurations are the reverse for an oblate capsule as

compared to the ones of a prolate capsule. These results allow us to determine the

time required for an oblate capsule initially placed off the shear plane to reach its stable

equilibrium state. Such information is needed when setting up experiments to observe the

behavior of oblate capsules such as red blood cells or for numerical modelers to choose

the computational time adequately.

8.2 Perspectives

In this work, we have considered separately the effects on capsule dynamics of bending

resistance and of non-sphericity. In the future, the combination of these effects could be

studied. It will be interesting to continue the present research at the following aspects:

• Dynamics of ellipsoidal capsules with bending resistance in shear flow. We

observe that an ellipsoidal capsule with a membrane devoid of bending resistance

in shear flow is sometimes subjected to compressive tensions and that wrinkles

appear. It would be interesting to study the influence of the bending resistance on

the stable equilibrium configurations that we have determined with the membrane

model. However, the use of the shell model might increase the convergence time.

Some first simulations have shown a more complex dynamics than the one observed

with the membrane model.

• Dynamics of capsules with bending resistance flowing in a channel. When

an artificial capsule is deformed in a channel, the wall undergoes compressive ten-

sions and wrinkles appear (Figure 8.1a). The localization of wrinkle formation can

be predicted using the adapted membrane BI–FE method developed by Hu et al.
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(a) (b)
numerical profile
experimental profile

Figure 8.1: Capsule flowing in a channel: (a) wrinkle formation in a cylindrical channel
(Chu, 2011), (b) comparison of profiles between experiments and numerical results for a
capsule flowing in a square channel (UMR CNRS 7338).

(2012). The shell model could be used to study the post–buckling and in particular

to determine the relation between wrinkle wavelength and wall thickness in a chan-

nel. Knowing this constitutive law, we will be able to determine the wall thickness.

The wall bending will be found from the value of the wall thickness and the surface

shear modulus will be deduced using the inverse analysis introduced by Hu et al.

(2013) and explained in the section 1.3.3. This method is based on the comparison

between experimental and numerical profiles of capsules flowing in a microfluidic

channel to deduce the membrane mechanical properties of a population of artificial

capsules. However, Figure 8.1b shows large differences between the experimental

profile and the best matching numerical profile. In such case, the method fails to

provide the capsule mechanical properties. This might be due to the fact that cap-

sule shape cannot be correctly computed with a model devoid of bending resistance.

In order to reduce the computational time, it will be interesting to first study the in-

fluence of the bending resistance on a capsule subjected to an unbounded parabolic

flow. Some differences between the shell and membrane models might be observed

since the stretching of the mid–surface is not the main deformation mode in such

flow.

However, long computational times are already necessary to reach a steady state in

these two cases when the wall bending resistance is neglected. The use of a thin shell

model will increase conputational times. At this time, it seems difficult to carry out

systematic studies with the shell model, as we have done with the membrane model.

Such simulations are very expensive in time. To reduce computational times, it will be

interesting to parallelize the numerical algorithm.

• Experimental study on the dynamics of ellipsoidal capsule in shear flow.

Even if ellipsoidal capsules have interesting properties of mass transfer, there is

no technique nowadays to produce ellipsoidal capsules with a wall–controlled given
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aspect ratio. If we are able to produce such capsule, it will be interesting to sub-

ject them to a simple shear flow, to compare experimental observations with the

numerical results obtained in this thesis.

• Dynamics of capsule with membrane viscosity. Red blood cells have a signif-

icant membrane viscosity of order 1× 10−7. The differences between the numerical

results and the experimental observations may be explained by the combined effect

of the membrane viscosity and the internal viscosity. In order to identify the im-

portance of the membrane viscosity, it will be interesting to take into account the

membrane viscosity in the membrane model and carried out a study on its effect on

the capsule dynamics.
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Appendix A

Determination of the stability

criterion

A.1 Thin shell model

The discrete solid problem (Eq. 3.18a,b) can be written under matrix form





Kmm Kmb

KT
mb Kbb









us

θ



 =





R

0



 (A.1)

where Kmm, Kmb and Kbb represent the membrane, membrane-bending and bending stiff-

ness matrices respectively. R is similar to a reaction force. The two following equalities

are deduced from the previous system

{R} = [Kmm] {us}+ [Kmb] {θ}
{θ} = −[Kmb]T [Kbb]−1 (A.2)

Thus,

{R} =
(

[Kmm] − [Kmb] [K−1
bb ] [Kmb]T

)

{us} . (A.3)

As ‖[Kmm] − [Kmb] [Kbb]−1 [Kmb]T‖ ≤ [Kmm], the stability criterion defined previously

by Walter et al. (2010) when the capsule wall is devoid of bending resistance, remains

available: the introduction of the bending improves the numerical stability.

A.2 Membrane

When the capsule wall is modeled as a two–dimensional surface, the discrete form of the

equilibrium equation (2.19) is

[Ks] {us}+ [Ms]T{q} = 0 (A.4)

where [Ks] and [Ms] are the stiffness and mass matrix relative to the solid. All quantities

relative to the solid and the fluid will be noted with the subscript "S" and "F" respectively.
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The kinematical assumption (Eq. 2.59) is written in the discrete form

[Ms] {u̇s} = [Mf ] {u̇f} (A.5)

where the notation u̇ represents the time derivative of the vector {u}.
When the internal and external fluids have the same viscosity (λ = 1), the expression

of the velocity (Eq. 2.74) deduced from the boundary integral formulation can be written

[Mf ] {u̇f} = [Kf ]−1{q} (A.6)

Using the equality (A.4, A.5), the equation (A.6) becomes

{q} = [Kf ] [Mf ] {u̇f}
= [Kf ] [Ms] {u̇s} (A.7)

By substituting the expression of {q} in the equation (A.4), we find

[Ks] {us} = −
(

[Ms]T [Kf ] [Ms]
)

{u̇s} . (A.8)

This expression can be rewritten as

{un+1
s } − {un

s}
{un+1

s } =
[Ks]∆t

[Ms]T [Kf ] [Ms]
(A.9)

to find an expression of the time step ∆t.

We can then estimate the approximative size of the mass and stiffness matrices [Ms],

[Kf ] and [Kf ]

[Ms] ∼ 1

[Kf ] ∼ µ

∆x

[Ks] ∼
Gs

(∆x)2
. (A.10)

Thus,
[Ks]∆t

[Ms]T [Kf ] [Ms]
∼ Gs

(∆x)2
× ∆x

µ
×∆t =

γ̇ℓ

∆x Cas
∆t (A.11)

Finally, the stability condition of the membrane numerical algorithm verifies

γ̇∆t < O
(

∆x Cas

ℓ

)

. (A.12)
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